論文の概要: Spatial-Temporal Federated Learning for Lifelong Person Re-identification on Distributed Edges
- arxiv url: http://arxiv.org/abs/2207.11759v2
- Date: Wed, 11 Dec 2024 14:47:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:00:27.434437
- Title: Spatial-Temporal Federated Learning for Lifelong Person Re-identification on Distributed Edges
- Title(参考訳): 分散エッジ上での生涯人物再識別のための時空間フェデレーション学習
- Authors: Lei Zhang, Guanyu Gao, Huaizheng Zhang,
- Abstract要約: FedSTILは、異なるエッジクライアントから学んだ知識間の空間的時間的相関を抽出することを目的としている。
5つの実世界のデータセットの混合実験により、我々の手法はRan-1精度で4%近く向上していることが示された。
- 参考スコア(独自算出の注目度): 8.15821314623415
- License:
- Abstract: Data drift is a thorny challenge when deploying person re-identification (ReID) models into real-world devices, where the data distribution is significantly different from that of the training environment and keeps changing. To tackle this issue, we propose a federated spatial-temporal incremental learning approach, named FedSTIL, which leverages both lifelong learning and federated learning to continuously optimize models deployed on many distributed edge clients. Unlike previous efforts, FedSTIL aims to mine spatial-temporal correlations among the knowledge learnt from different edge clients. Specifically, the edge clients first periodically extract general representations of drifted data to optimize their local models. Then, the learnt knowledge from edge clients will be aggregated by centralized parameter server, where the knowledge will be selectively and attentively distilled from spatial- and temporal-dimension with carefully designed mechanisms. Finally, the distilled informative spatial-temporal knowledge will be sent back to correlated edge clients to further improve the recognition accuracy of each edge client with a lifelong learning method. Extensive experiments on a mixture of five real-world datasets demonstrate that our method outperforms others by nearly 4% in Rank-1 accuracy, while reducing communication cost by 62%. All implementation codes are publicly available on https://github.com/MSNLAB/Federated-Lifelong-Person-ReID
- Abstract(参考訳): データドリフトは、人の再識別(ReID)モデルを現実のデバイスにデプロイする際の厄介な課題である。
この問題に対処するために,フェデレーション付き時空間漸進学習手法であるFedSTILを提案する。これは,生涯学習とフェデレーション学習の両方を活用し,多くの分散エッジクライアントにデプロイされたモデルを継続的に最適化する。
従来の取り組みとは異なり、FedSTILは異なるエッジクライアントから学んだ知識間の空間的時間的相関をマイニングすることを目的としている。
具体的には、エッジクライアントがドリフトデータの一般的な表現を定期的に抽出し、ローカルモデルを最適化する。
次に、エッジクライアントから学習した知識を集中パラメータサーバで集約し、その知識を慎重に設計されたメカニズムで空間次元と時間次元から選択的に抽出する。
最後に、蒸留した情報的空間時間知識を関連エッジクライアントに送信し、生涯学習法により、各エッジクライアントの認識精度をさらに向上させる。
5つの実世界のデータセットの混合による大規模な実験により、我々の手法はRan-1の精度で4%近く向上し、通信コストは62%削減された。
すべての実装コードはhttps://github.com/MSNLAB/Federated-Lifelong-Person-ReIDで公開されている。
関連論文リスト
- Optimizing Federated Learning by Entropy-Based Client Selection [13.851391819710367]
ディープラーニングドメインは通常、最適なパフォーマンスのために大量のデータを必要とします。
FedOptEntは、ラベル配布スキューによるパフォーマンスの問題を軽減するように設計されている。
提案手法は,最先端のアルゴリズムを最大6%の精度で高速化する。
論文 参考訳(メタデータ) (2024-11-02T13:31:36Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - SalientGrads: Sparse Models for Communication Efficient and Data Aware
Distributed Federated Training [1.0413504599164103]
フェデレートラーニング(FL)は、データを収集せずにプライバシを保ちながら、クライアントサイトの分散データを活用したモデルのトレーニングを可能にする。
FLの重要な課題の1つは、リソース制限されたエッジクライアントノードにおける計算の制限と通信帯域の低さである。
本稿では,学習前にデータ認識サブネットワークを選択することで,スパーストレーニングのプロセスを簡単にするSalient Gradsを提案する。
論文 参考訳(メタデータ) (2023-04-15T06:46:37Z) - FRAug: Tackling Federated Learning with Non-IID Features via
Representation Augmentation [31.12851987342467]
Federated Learning(FL)は、複数のクライアントが協調してディープラーニングモデルをトレーニングする分散学習パラダイムである。
本稿では,FRAug(Federated Representation Augmentation)を提案する。
当社のアプローチでは,通常は小さなクライアントデータセットを増大させるために,埋め込み空間にクライアント固有の合成サンプルを生成する。
論文 参考訳(メタデータ) (2022-05-30T07:43:42Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Tackling Dynamics in Federated Incremental Learning with Variational
Embedding Rehearsal [27.64806509651952]
FLシナリオにおける漸進的な学習プロセスに対処する新しいアルゴリズムを提案する。
まず、クライアントデータのプライバシーを確保するために、ディープ変分埋め込み(Deep Variational Embeddings)を提案する。
第2に,学習した知識をモデルでリハーサルするサーバサイドトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-19T02:26:35Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
フェデレーション学習は、データをローカルに保持しながら、クライアントのネットワークに分散したデータサンプルから学習する。
本稿では,学習手順を高速化するために,クライアントデータの統計的特徴を取り入れてクライアントを適応的に選択する,ストラグラー・レジリエントなフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T19:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。