Tree-based Implementation of the Small Matrix Path Integral for
System-Bath Dynamics
- URL: http://arxiv.org/abs/2207.11830v2
- Date: Sun, 10 Dec 2023 07:41:58 GMT
- Title: Tree-based Implementation of the Small Matrix Path Integral for
System-Bath Dynamics
- Authors: Geshuo Wang and Zhenning Cai
- Abstract summary: The t-SMatPI algorithm is shown to be much faster than straightforward computation of the kernel matrices based on their definitions.
Our method may indicate some new properties of open quantum systems, and has the potential to be generalized to higher-order numerical schemes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The small matrix path integral (SMatPI) method is an efficient numerical
approach to simulate the evolution of a quantum system coupled to a harmonic
bath. The method relies on a sequence of kernel matrices that defines the
non-Markovian dynamics of the quantum system. In the original SMatPI method,
these kernels are computed indirectly through the QuAPI method. Instead, we
focus on the definition of the kernel matrices and reveal a recurrence relation
in these matrices. Using such a relationship, a tree based algorithm (t-SMatPI)
is developed, which is shown to be much faster than straightforward computation
of the kernel matrices based on their definitions. This algorithm bypasses the
step to compute the SMatPI matrices by other path integral methods and provides
more understanding of the SMatPI matrices themselves. Meanwhile, it keeps the
memory cost and computational cost low. Numerical experiments show that the
t-SMatPI algorithm gives exactly the same result as i-QuAPI and SMatPI. In
spite of this, our method may indicate some new properties of open quantum
systems, and has the potential to be generalized to higher-order numerical
schemes.
Related papers
- Matrix encoding method in variational quantum singular value decomposition [49.494595696663524]
Conditional measurement is involved to avoid small success probability in ancilla measurement.
The objective function for the algorithm can be obtained probabilistically via measurement of the state of a one-qubit subsystem.
arXiv Detail & Related papers (2025-03-19T07:01:38Z) - Computing Gram Matrix for SMILES Strings using RDKFingerprint and Sinkhorn-Knopp Algorithm [3.9146761527401424]
In molecular structure data, SMILES (Simplified Molecular Input Line Entry System) strings are used to analyze molecular structure design.
This work proposes a kernel-based approach for encoding and analyzing molecular structures from SMILES strings.
arXiv Detail & Related papers (2024-12-19T10:31:25Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
We study matrix estimation problems arising in reinforcement learning (RL) with low-rank structure.
In low-rank bandits, the matrix to be recovered specifies the expected arm rewards, and for low-rank Markov Decision Processes (MDPs), it may for example characterize the transition kernel of the MDP.
We show that simple spectral-based matrix estimation approaches efficiently recover the singular subspaces of the matrix and exhibit nearly-minimal entry-wise error.
arXiv Detail & Related papers (2023-10-10T17:06:41Z) - Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
We design algorithms for Robust Component Analysis (A)
It consists in decomposing a matrix into the sum of a low Principaled matrix and a sparse Principaled matrix.
arXiv Detail & Related papers (2023-07-12T03:48:26Z) - BioSequence2Vec: Efficient Embedding Generation For Biological Sequences [1.0896567381206714]
We propose a general-purpose representation learning approach that embodies kernel methods' qualities while avoiding computation, memory, and generalizability challenges.
Our proposed fast and alignment-free embedding method can be used as input to any distance.
We perform a variety of real-world classification tasks, such as SARS-CoV-2 lineage and gene family classification, outperforming several state-of-the-art embedding and kernel methods in predictive performance.
arXiv Detail & Related papers (2023-04-01T10:58:21Z) - Fast Differentiable Matrix Square Root and Inverse Square Root [65.67315418971688]
We propose two more efficient variants to compute the differentiable matrix square root and the inverse square root.
For the forward propagation, one method is to use Matrix Taylor Polynomial (MTP), and the other method is to use Matrix Pad'e Approximants (MPA)
A series of numerical tests show that both methods yield considerable speed-up compared with the SVD or the NS iteration.
arXiv Detail & Related papers (2022-01-29T10:00:35Z) - Sublinear Time Approximation of Text Similarity Matrices [50.73398637380375]
We introduce a generalization of the popular Nystr"om method to the indefinite setting.
Our algorithm can be applied to any similarity matrix and runs in sublinear time in the size of the matrix.
We show that our method, along with a simple variant of CUR decomposition, performs very well in approximating a variety of similarity matrices.
arXiv Detail & Related papers (2021-12-17T17:04:34Z) - Contour Integral-based Quantum Algorithm for Estimating Matrix
Eigenvalue Density [5.962184741057505]
We propose a quantum algorithm for computing the eigenvalue density in a given interval.
The eigenvalue count in a given interval is derived as the probability of observing a bit pattern in a fraction of the qubits of the output state.
arXiv Detail & Related papers (2021-12-10T08:58:44Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
Current algorithms are designed using the block coordinate descent method or the proximal point algorithm.
We propose a novel algorithm based on the two-metric projection method, incorporating a carefully designed search direction and variable partitioning scheme.
Experimental results on synthetic and real-world datasets demonstrate that our proposed algorithm provides a significant improvement in computational efficiency compared to the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-03T14:39:10Z) - Non-Markovian Stochastic Schr\"odinger Equation: Matrix Product State
Approach to the Hierarchy of Pure States [65.25197248984445]
We derive a hierarchy of matrix product states (HOMPS) for non-Markovian dynamics in open finite temperature.
The validity and efficiency of HOMPS is demonstrated for the spin-boson model and long chains where each site is coupled to a structured, strongly non-Markovian environment.
arXiv Detail & Related papers (2021-09-14T01:47:30Z) - Robust 1-bit Compressive Sensing with Partial Gaussian Circulant
Matrices and Generative Priors [54.936314353063494]
We provide recovery guarantees for a correlation-based optimization algorithm for robust 1-bit compressive sensing.
We make use of a practical iterative algorithm, and perform numerical experiments on image datasets to corroborate our results.
arXiv Detail & Related papers (2021-08-08T05:28:06Z) - The Fast Kernel Transform [21.001203328543006]
We propose the Fast Kernel Transform (FKT), a general algorithm to compute matrix-vector multiplications for datasets in moderate dimensions with quasilinear complexity.
The FKT is easily applied to a broad class of kernels, including Gaussian, Matern, and Rational Quadratic covariance functions and physically motivated Green's functions.
We illustrate the efficacy and versatility of the FKT by providing timing and accuracy benchmarks and by applying it to scale the neighborhood embedding (t-SNE) and Gaussian processes to large real-world data sets.
arXiv Detail & Related papers (2021-06-08T16:15:47Z) - Fast and Accurate Pseudoinverse with Sparse Matrix Reordering and
Incremental Approach [4.710916891482697]
A pseudoinverse is a generalization of a matrix inverse, which has been extensively utilized in machine learning.
FastPI is a novel incremental singular value decomposition (SVD) based pseudoinverse method for sparse matrices.
We show that FastPI computes the pseudoinverse faster than other approximate methods without loss of accuracy.
arXiv Detail & Related papers (2020-11-09T07:47:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.