Towards Systems Education for Artificial Intelligence: A Course Practice
in Intelligent Computing Architectures
- URL: http://arxiv.org/abs/2207.12229v1
- Date: Wed, 22 Jun 2022 11:48:04 GMT
- Title: Towards Systems Education for Artificial Intelligence: A Course Practice
in Intelligent Computing Architectures
- Authors: Jianlei Yang, Xiaopeng Gao, Weisheng Zhao
- Abstract summary: This course aims to teach students for designing AI accelerators on FPGA platforms.
The elaborated course contents include lecture notes and related technical materials.
Some teaching experiences and effects are discussed as well as some potential improvements in the future.
- Score: 6.440694188229122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of artificial intelligence (AI) community,
education in AI is receiving more and more attentions. There have been many AI
related courses in the respects of algorithms and applications, while not many
courses in system level are seriously taken into considerations. In order to
bridge the gap between AI and computing systems, we are trying to explore how
to conduct AI education from the perspective of computing systems. In this
paper, a course practice in intelligent computing architectures are provided to
demonstrate the system education in AI era. The motivation for this course
practice is first introduced as well as the learning orientations. The main
goal of this course aims to teach students for designing AI accelerators on
FPGA platforms. The elaborated course contents include lecture notes and
related technical materials. Especially several practical labs and projects are
detailed illustrated. Finally, some teaching experiences and effects are
discussed as well as some potential improvements in the future.
Related papers
- AI for non-programmers: Applied AI in the lectures for students without programming skills [0.0]
This work presents a didactic planning script for applied AI.
The didactic planning script is based on the AI application pipeline and links AI concepts with study-relevant topics.
An example lecture series for master students in energy management shows how AI can be seamlessly integrated into discipline-specific lectures.
arXiv Detail & Related papers (2024-02-06T17:26:24Z) - Transdisciplinary AI Education: The Confluence of Curricular and
Community Needs in the Instruction of Artificial Intelligence [0.7133676002283578]
We examine the current state of AI in education and explore the potential benefits and challenges of incorporating this technology into the classroom.
This paper delves into the AI program currently in development for Neom Community School and the larger Education, Research, and Innovation Sector in Neom, Saudi Arabia s new megacity under development.
arXiv Detail & Related papers (2023-11-10T17:26:27Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - An Experience Report of Executive-Level Artificial Intelligence
Education in the United Arab Emirates [53.04281982845422]
We present an experience report of teaching an AI course to business executives in the United Arab Emirates (UAE)
Rather than focusing only on theoretical and technical aspects, we developed a course that teaches AI with a view to enabling students to understand how to incorporate it into existing business processes.
arXiv Detail & Related papers (2022-02-02T20:59:53Z) - A Classification of Artificial Intelligence Systems for Mathematics
Education [3.718476964451589]
This chapter provides an overview of the different Artificial Intelligence (AI) systems that are being used in digital tools for Mathematics Education (ME)
It is aimed at researchers in AI and Machine Learning (ML), for whom we shed some light on the specific technologies that are being used in educational applications.
arXiv Detail & Related papers (2021-07-13T12:09:10Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Software Engineering for AI-Based Systems: A Survey [8.550158373713906]
There is limited synthesized knowledge on Software Engineering approaches for building, operating, and maintaining AI-based systems.
SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018.
The most studied properties of AI-based systems are dependability and safety.
arXiv Detail & Related papers (2021-05-05T11:22:08Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - AI from concrete to abstract: demystifying artificial intelligence to
the general public [0.0]
This article presents a new methodology, AI from concrete to abstract (AIcon2abs)
The main strategy adopted by is to promote a demystification of artificial intelligence.
The simplicity of the WiSARD weightless artificial neural network model enables easy visualization and understanding of training and classification tasks.
arXiv Detail & Related papers (2020-06-07T01:14:06Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.