A Classification of Artificial Intelligence Systems for Mathematics
Education
- URL: http://arxiv.org/abs/2107.06015v1
- Date: Tue, 13 Jul 2021 12:09:10 GMT
- Title: A Classification of Artificial Intelligence Systems for Mathematics
Education
- Authors: Steven Van Vaerenbergh and Adri\'an P\'erez-Suay
- Abstract summary: This chapter provides an overview of the different Artificial Intelligence (AI) systems that are being used in digital tools for Mathematics Education (ME)
It is aimed at researchers in AI and Machine Learning (ML), for whom we shed some light on the specific technologies that are being used in educational applications.
- Score: 3.718476964451589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This chapter provides an overview of the different Artificial Intelligence
(AI) systems that are being used in contemporary digital tools for Mathematics
Education (ME). It is aimed at researchers in AI and Machine Learning (ML), for
whom we shed some light on the specific technologies that are being used in
educational applications; and at researchers in ME, for whom we clarify: i)
what the possibilities of the current AI technologies are, ii) what is still
out of reach and iii) what is to be expected in the near future. We start our
analysis by establishing a high-level taxonomy of AI tools that are found as
components in digital ME applications. Then, we describe in detail how these AI
tools, and in particular ML, are being used in two key applications,
specifically AI-based calculators and intelligent tutoring systems. We finish
the chapter with a discussion about student modeling systems and their
relationship to artificial general intelligence.
Related papers
- Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
An artificial general intelligence (AGI) has been an elusive goal in artificial intelligence (AI) research for some time.
An AGI would have the capability, like a human, to be exposed to a new problem domain, learn about it and then use reasoning processes to make decisions.
This paper presents a small step towards producing an AGI.
arXiv Detail & Related papers (2024-06-17T07:21:44Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - AI in Software Engineering: A Survey on Project Management Applications [3.156791351998142]
Machine Learning (ML) employs algorithms that undergo training on data sets, enabling them to carry out specific tasks autonomously.
AI holds immense potential in the field of software engineering, particularly in project management and planning.
arXiv Detail & Related papers (2023-07-27T23:02:24Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Towards Systems Education for Artificial Intelligence: A Course Practice
in Intelligent Computing Architectures [6.440694188229122]
This course aims to teach students for designing AI accelerators on FPGA platforms.
The elaborated course contents include lecture notes and related technical materials.
Some teaching experiences and effects are discussed as well as some potential improvements in the future.
arXiv Detail & Related papers (2022-06-22T11:48:04Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Measuring Ethics in AI with AI: A Methodology and Dataset Construction [1.6861004263551447]
We propose to use such newfound capabilities of AI technologies to augment our AI measuring capabilities.
We do so by training a model to classify publications related to ethical issues and concerns.
We highlight the implications of AI metrics, in particular their contribution towards developing trustful and fair AI-based tools and technologies.
arXiv Detail & Related papers (2021-07-26T00:26:12Z) - Watershed of Artificial Intelligence: Human Intelligence, Machine
Intelligence, and Biological Intelligence [0.2580765958706853]
This article reviews the Once Learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot Learning in image classification and You Only Look Once-YOLO in objective detection.
The proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI)
arXiv Detail & Related papers (2021-04-27T13:03:25Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.