論文の概要: RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments
- arxiv url: http://arxiv.org/abs/2207.12321v1
- Date: Sat, 16 Jul 2022 12:40:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-31 14:19:28.747948
- Title: RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments
- Title(参考訳): RSG-Net:複雑な環境下でのインテリジェント車両のリッチセマティック関係予測に向けて
- Authors: Yafu Tian, Alexander Carballo, Ruifeng Li and Kazuya Takeda
- Abstract要約: 本稿では,オブジェクトの提案から潜在的意味関係を予測するグラフ畳み込みネットワークRSG-Netを提案する。
実験の結果、このネットワークはロードシーングラフデータセットに基づいてトレーニングされており、エゴ車両周辺のオブジェクト間の潜在的な意味関係を効率的に予測できることがわかった。
- 参考スコア(独自算出の注目度): 72.04891523115535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Behavioral and semantic relationships play a vital role on intelligent
self-driving vehicles and ADAS systems. Different from other research focused
on trajectory, position, and bounding boxes, relationship data provides a human
understandable description of the object's behavior, and it could describe an
object's past and future status in an amazingly brief way. Therefore it is a
fundamental method for tasks such as risk detection, environment understanding,
and decision making. In this paper, we propose RSG-Net (Road Scene Graph Net):
a graph convolutional network designed to predict potential semantic
relationships from object proposals, and produces a graph-structured result,
called "Road Scene Graph". The experimental results indicate that this network,
trained on Road Scene Graph dataset, could efficiently predict potential
semantic relationships among objects around the ego-vehicle.
- Abstract(参考訳): 行動と意味の関係は、インテリジェントな自動運転車とadasシステムにおいて重要な役割を果たす。
軌道、位置、バウンドボックスに焦点を当てた他の研究とは異なり、関係データは物体の挙動を人間に理解できる記述を提供し、物体の過去と将来の状態を驚くほど簡潔に記述することができる。
したがって、リスク検出、環境理解、意思決定といったタスクの基本的な方法である。
本稿では、オブジェクトの提案から潜在的意味関係を予測するために設計されたグラフ畳み込みネットワークRSG-Net(Road Scene Graph Net)を提案し、"Road Scene Graph"と呼ばれるグラフ構造化結果を生成する。
実験の結果,道路シーングラフデータセットでトレーニングされたこのネットワークは,車体周辺の物体間の潜在的な意味関係を効率的に予測できることが示唆された。
関連論文リスト
- nuScenes Knowledge Graph -- A comprehensive semantic representation of
traffic scenes for trajectory prediction [6.23221362105447]
交通シーンにおける軌道予測は、周囲の車両の挙動を正確に予測する。
車両の走行経路、道路トポロジー、車線分割器、交通規則など、文脈情報を考慮することが重要である。
本稿では,知識グラフを用いて交通シーン内の多様なエンティティとその意味的関係をモデル化する手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T10:40:34Z) - Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory
Prediction using Diffusion Graph Convolutional Networks [17.989423104706397]
本研究では,グラフに基づく対話型多モード軌道予測フレームワークを提案する。
このフレームワーク内では、車両の動きは時間変化グラフのノードとして概念化され、交通相互作用は動的隣接行列によって表現される。
我々は、意図特異的な特徴融合を採用し、歴史的および将来の埋め込みの適応的な統合を可能にする。
論文 参考訳(メタデータ) (2023-09-05T06:28:13Z) - Detecting Owner-member Relationship with Graph Convolution Network in
Fisheye Camera System [9.665475078766017]
我々は,グラフ畳み込みネットワーク(GCN)を設計して,革新的な関係予測手法であるDeepWORDを提案する。
実験の結果,提案手法が最先端の精度と実時間性能を達成できることが判明した。
論文 参考訳(メタデータ) (2022-01-28T13:12:27Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
人間のように3Dエンボディ環境のどこからでも言語ガイドされたターゲットに向かって移動する能力は、インテリジェントロボットの「聖杯」目標の1つです。
ほとんどのビジュアルナビゲーションベンチマークは、ステップバイステップの詳細な命令セットに導かれ、固定された出発点から目標に向かって移動することに焦点を当てている。
このアプローチは、人間だけが物体とその周囲がどのように見えるかを説明する現実世界の問題から逸脱し、ロボットにどこからでも航行を依頼する。
論文 参考訳(メタデータ) (2021-03-31T15:01:04Z) - Road Scene Graph: A Semantic Graph-Based Scene Representation Dataset
for Intelligent Vehicles [72.04891523115535]
本稿では,車載用特別シーングラフである道路シーングラフを提案する。
オブジェクトの提案だけでなく、ペアワイドな関係も提供します。
それらをトポロジカルグラフで整理することで、これらのデータは説明可能であり、完全に接続され、GCNによって容易に処理できる。
論文 参考訳(メタデータ) (2020-11-27T07:33:11Z) - RAIST: Learning Risk Aware Traffic Interactions via Spatio-Temporal
Graph Convolutional Networks [19.582873794287632]
道路車両を運転する上で重要な側面は、他の道路利用者と対話し、その意図を評価し、リスクを意識した戦術決定を行うことである。
本稿では,交通グラフに基づくエゴセントリックなビューのための新しいドライビングフレームワークを提案する。
我々は,リスクオブジェクト識別の課題を改善することにより,リスク認識表現を学習する。
論文 参考訳(メタデータ) (2020-11-17T15:49:22Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
交通参加者の行動の正確な予測は、自動運転車にとって必須の能力である。
本稿では, セマンティクスとドメイン知識を活かして, 様々な運転環境に対する新しい汎用表現を提案する。
論文 参考訳(メタデータ) (2020-04-07T00:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。