論文の概要: Molecular Quantum Circuit Design: A Graph-Based Approach
- arxiv url: http://arxiv.org/abs/2207.12421v1
- Date: Mon, 25 Jul 2022 18:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-03 19:27:55.775349
- Title: Molecular Quantum Circuit Design: A Graph-Based Approach
- Title(参考訳): 分子量子回路設計:グラフに基づくアプローチ
- Authors: Jakob S. Kottmann
- Abstract要約: 本研究は、パラメタライズド量子回路の設計原理を開発する。
開発された設計原則は、分子系の量子回路設計における3つの主要な障害の全てを前進させる手段を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work develops design principles for parametrized quantum circuits
leveraging chemical graphs that are connected to molecular orbitals and their
representation as unitary operations. Targeted construction of comparably
shallow and local low-parametrized quantum circuits suitable for variational
optimization is demonstrated and compared to state of the art methods. The
developed design principle provides a way forward in all three major obstacles
in quantum circuit design for molecular systems: Operator ordering, parameter
initialization and initial state preparation.
- Abstract(参考訳): 本研究は、分子軌道に接続された化学グラフを利用したパラメトリゼーション量子回路の設計原理とそのユニタリ演算としての表現を開発する。
可変最適化に適した浅小かつ局所的な低パラメータ化量子回路のターゲット構成を実証し,技術手法の状況と比較した。
進化した設計原理は、分子系における量子回路設計における3つの大きな障害、すなわち演算子の順序付け、パラメータの初期化、初期状態の合成の方法を提供する。
関連論文リスト
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
本稿では,デコーダのみのグラフトランスフォーマアーキテクチャであるGraphXFormについて述べる。
液液抽出のための2つの溶媒設計課題について評価し,4つの最先端分子設計技術より優れていることを示した。
論文 参考訳(メタデータ) (2024-11-03T19:45:15Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
本稿では,量子情報処理の導入について紹介する。
量子アルゴリズムを理解し設計するための基本的なツールを紹介し、分子スピンアーキテクチャ上での実際の実現を常に言及する。
分子スピンキュートハードウェア上で提案および実装された量子アルゴリズムの例を示す。
論文 参考訳(メタデータ) (2024-05-31T16:43:20Z) - Quantum Information Driven Ansatz (QIDA): shallow-depth empirical
quantum circuits from Quantum Chemistry [0.0]
本稿では,古典量子化学状態に付随する量子相互情報を活用し,変分量子回路を構築するための新しい手法を提案する。
提案手法は,高効率なアンサーゼを発生させ,性能の標準的な経験的ラグエンタングルアザッツを超越する。
論文 参考訳(メタデータ) (2023-09-26T21:50:02Z) - Graph-theoretic insights on the constructability of complex entangled states [0.24578723416255752]
本稿では,実験用量子光学において重要なオープンな疑問に答える実験用グラフ上での局所スペーサー化手法を紹介する。
これにより、量子資源理論、特定の量子フォトニクス系の制限、および量子物理学の実験を設計するためのグラフ理論技術の使用に関するさらなる洞察が得られます。
論文 参考訳(メタデータ) (2023-04-13T11:13:17Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
混合ワイル記号は、脳の過程を顕微鏡レベルで記述するために用いられる。
プロセスに関与する電磁場とフォノンモードは古典的または半古典的に扱われる。
ゼロ点量子効果は、各フィールドモードの温度を制御することで数値シミュレーションに組み込むことができる。
論文 参考訳(メタデータ) (2023-01-17T15:16:21Z) - Exhaustive search for optimal molecular geometries using imaginary-time
evolution on a quantum computer [0.0]
第一量子化固有解法のための分子の幾何最適化のための非変分法スキームを提案する。
電子状態と分子の候補を多ビット状態の重ね合わせとしてエンコードする。
回路深さは電子番号n_eのO(n_e2 poly(log n_e))としてスケールし、余剰O(n_e log n_e)量子ビットが利用可能であればO(n_e poly(log n_e))に縮小できる。
論文 参考訳(メタデータ) (2022-10-18T14:18:20Z) - On-Demand Entanglement of Molecules in a Reconfigurable Optical Tweezer
Array [0.0]
絡み合いは、量子情報処理、量子多体系のシミュレーション、量子エンハンスドセンシングを含む多くの量子アプリケーションにとって重要である。
ここでは、初めて、個々の制御された分子のオンデマンドな絡み合いを示す。
絡み合う2量子ゲートを実現し、ベル対を決定論的に生成する。
論文 参考訳(メタデータ) (2022-10-12T15:23:04Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - A perspective on scaling up quantum computation with molecular spins [0.0]
化学設計により、各分子単位に非自明な量子関数を埋め込むことができる。
我々は、オンチップ超伝導共振器との結合により、この目標を達成する方法について論じる。
論文 参考訳(メタデータ) (2021-05-03T07:11:36Z) - Quantum walk processes in quantum devices [55.41644538483948]
グラフ上の量子ウォークを量子回路として表現する方法を研究する。
提案手法は,量子ウォークアルゴリズムを量子コンピュータ上で効率的に実装する方法である。
論文 参考訳(メタデータ) (2020-12-28T18:04:16Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
数値的なアナログシミュレータの動作条件をベンチマークし、要求の少ない実験装置を見出す。
また、離散化と有限サイズ効果により生じるシミュレーションの誤差についてより深く理解する。
論文 参考訳(メタデータ) (2020-11-28T11:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。