論文の概要: Estimating and Controlling for Fairness via Sensitive Attribute
Predictors
- arxiv url: http://arxiv.org/abs/2207.12497v1
- Date: Mon, 25 Jul 2022 19:56:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-27 13:24:04.347956
- Title: Estimating and Controlling for Fairness via Sensitive Attribute
Predictors
- Title(参考訳): 属性予測器による公正度の推定と制御
- Authors: Beepul Bharti, Paul Yi, Jeremias Sulam
- Abstract要約: 本稿では,プライマリ属性予測器から派生したプロキシセンシティブな属性を用いて,公平さを推定し,制御する方法を示す。
研究結果は、一連の合成および実際のデータセットで説明します。
- 参考スコア(独自算出の注目度): 7.713240800142863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although machine learning classifiers have been increasingly used in
high-stakes decision making (e.g., cancer diagnosis, criminal prosecution
decisions), they have demonstrated biases against underrepresented groups.
Standard definitions of fairness require access to sensitive attributes of
interest (e.g., gender and race), which are often unavailable. In this work we
demonstrate that in these settings where sensitive attributes are unknown, one
can still reliably estimate and ultimately control for fairness by using proxy
sensitive attributes derived from a sensitive attribute predictor.
Specifically, we first show that with just a little knowledge of the complete
data distribution, one may use a sensitive attribute predictor to obtain upper
and lower bounds of the classifier's true fairness metric. Second, we
demonstrate how one can provably control for fairness with respect to the true
sensitive attributes by controlling for fairness with respect to the proxy
sensitive attributes. Our results hold under assumptions that are significantly
milder than previous works. We illustrate our results on a series of synthetic
and real datasets.
- Abstract(参考訳): 機械学習の分類器は、高リスクな意思決定(がんの診断や刑事訴追の判断など)にますます使われてきたが、過小評価されたグループに対する偏見を示している。
公正性の標準的な定義は、しばしば利用できない、関心のセンシティブな属性(例えば、性別や人種)へのアクセスを必要とする。
本研究では,機密属性が不明な環境では,機密属性予測器から派生した代理的機密属性を用いて公平性を確実に推定し,最終的に制御できることを実証する。
具体的には、まず、完全なデータ分布について少しの知識があれば、機密属性予測器を用いて分類器の真公正度測定値の上下境界を求めることができることを示す。
第2に,真に敏感な属性に関して公平性を制御することにより,公正性をどのように制御できるかを実証する。
我々の結果は、以前の作品よりもかなり穏やかな仮定のもとに置かれている。
結果は、合成データと実際のデータセットで示します。
関連論文リスト
- Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection [63.93728560200819]
unsupervised out-of-distribution (U-OOD) は、未表示のin-distriion(ID)データのみに基づいて訓練された検出器でデータサンプルを識別することである。
近年の研究は、DGMに基づく様々な検出器を開発し、可能性を超えて移動している。
本研究では,各方向,特にポストホック前とデータセットエントロピー・ミューチュアルキャリブレーションの2つの手法を適用した。
実験の結果、結果が新しい最先端のU-OOD検出器になる可能性が示された。
論文 参考訳(メタデータ) (2024-09-05T02:58:13Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
我々は、モデルの精度に害を与えることなく、グループフェアネスの格差を軽減するモデルを訓練することを目指している。
公正なアクティブな学習アプローチのような現在のデータ取得方法は、通常、アノテートセンシティブな属性を必要とする。
トレーニンググループアノテーションに依存しない抽出可能なアクティブデータサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-20T07:57:38Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Counterfactual Reasoning for Bias Evaluation and Detection in a Fairness
under Unawareness setting [6.004889078682389]
現在のAI規制では、不公平な結果を防ぐために、アルゴリズムの意思決定プロセスで機密機能を破棄する必要がある。
本稿では、機密機能が破棄された場合でも継続可能な機械学習モデルの潜在的な隠れバイアスを明らかにする方法を提案する。
論文 参考訳(メタデータ) (2023-02-16T10:36:18Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - Mitigating Algorithmic Bias with Limited Annotations [65.060639928772]
機密属性が公開されていない場合、バイアスを軽減するために、トレーニングデータの小さな部分を手動でアノテートする必要がある。
本稿では,アルゴリズムバイアスの影響を最大限に排除するために,限定アノテーションを誘導する対話型フレームワークであるアクティブペナライゼーション・オブ・差別(APOD)を提案する。
APODは完全なアノテートバイアス緩和と同等のパフォーマンスを示しており、機密情報が制限された場合、APODが現実世界のアプリケーションに利益をもたらすことを実証している。
論文 参考訳(メタデータ) (2022-07-20T16:31:19Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
観測データセットからの因果推論は、しばしば共変量の測定と調整に依存する。
このロバストな最適化手法により、広範囲な因果調整法を拡張し、部分的同定を行うことができることを示す。
合成および実データセット全体で、このアプローチは既存の手法よりも高いカバレッジ確率でATEバウンダリを提供する。
論文 参考訳(メタデータ) (2022-02-22T04:24:26Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
強靭性と精度のトレードオフは、敵文学において広く研究されている。
局所的不変性の帰納的バイアスを課す不適切に定義された頑健な誤差に由来する可能性がある。
定義上、SCOREは、最悪のケースの不確実性に対処しながら、堅牢性と正確性の間の和解を促進する。
論文 参考訳(メタデータ) (2022-02-21T10:36:09Z) - Better sampling in explanation methods can prevent dieselgate-like
deception [0.0]
予測モデルの解釈性は、それらのバイアスとエラーの原因を決定するために必要である。
IME、LIME、SHAPなどの一般的なテクニックでは、インスタンス機能の摂動を使用して個々の予測を説明します。
改良されたサンプリングによりLIMEとSHAPのロバスト性が向上し,以前に未試験のメソッドIMEがすでに最もロバストであることが示されている。
論文 参考訳(メタデータ) (2021-01-26T13:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。