CENet: Toward Concise and Efficient LiDAR Semantic Segmentation for
Autonomous Driving
- URL: http://arxiv.org/abs/2207.12691v1
- Date: Tue, 26 Jul 2022 07:22:19 GMT
- Title: CENet: Toward Concise and Efficient LiDAR Semantic Segmentation for
Autonomous Driving
- Authors: Hui-Xian Cheng, Xian-Feng Han, Guo-Qiang Xiao
- Abstract summary: We present a textbfconcise and textbfefficient image-based semantic segmentation network, named textbfCENet.
Our pipeline achieves much better mIoU and inference performance compared with state-of-the-art models.
- Score: 4.6193503399184275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and fast scene understanding is one of the challenging task for
autonomous driving, which requires to take full advantage of LiDAR point clouds
for semantic segmentation. In this paper, we present a \textbf{concise} and
\textbf{efficient} image-based semantic segmentation network, named
\textbf{CENet}. In order to improve the descriptive power of learned features
and reduce the computational as well as time complexity, our CENet integrates
the convolution with larger kernel size instead of MLP, carefully-selected
activation functions, and multiple auxiliary segmentation heads with
corresponding loss functions into architecture. Quantitative and qualitative
experiments conducted on publicly available benchmarks, SemanticKITTI and
SemanticPOSS, demonstrate that our pipeline achieves much better mIoU and
inference performance compared with state-of-the-art models. The code will be
available at https://github.com/huixiancheng/CENet.
Related papers
- CSFNet: A Cosine Similarity Fusion Network for Real-Time RGB-X Semantic Segmentation of Driving Scenes [0.0]
multimodal semantic segmentation methods suffer from high computational complexity and low inference speed.
We propose the Cosine Similarity Fusion Network (CSFNet) as a real-time RGB-X semantic segmentation model.
CSFNet has competitive accuracy with state-of-the-art methods while being state-of-the-art in terms of speed.
arXiv Detail & Related papers (2024-07-01T14:34:32Z) - Low-Resolution Self-Attention for Semantic Segmentation [96.81482872022237]
We introduce the Low-Resolution Self-Attention (LRSA) mechanism to capture global context at a significantly reduced computational cost.
Our approach involves computing self-attention in a fixed low-resolution space regardless of the input image's resolution.
We demonstrate the effectiveness of our LRSA approach by building the LRFormer, a vision transformer with an encoder-decoder structure.
arXiv Detail & Related papers (2023-10-08T06:10:09Z) - Spatial-information Guided Adaptive Context-aware Network for Efficient
RGB-D Semantic Segmentation [9.198120596225968]
We propose an efficient lightweight encoder-decoder network that reduces the computational parameters and guarantees the robustness of the algorithm.
Experimental results on NYUv2, SUN RGB-D, and Cityscapes datasets show that our method achieves a better trade-off among segmentation accuracy, inference time, and parameters than the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-11T09:02:03Z) - LENet: Lightweight And Efficient LiDAR Semantic Segmentation Using
Multi-Scale Convolution Attention [0.0]
We propose a projection-based semantic segmentation network called LENet with an encoder-decoder structure for LiDAR-based semantic segmentation.
The encoder is composed of a novel multi-scale convolutional attention (MSCA) module with varying receptive field sizes to capture features.
We show that our proposed method is lighter, more efficient, and robust compared to state-of-the-art semantic segmentation methods.
arXiv Detail & Related papers (2023-01-11T02:51:38Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - RTFormer: Efficient Design for Real-Time Semantic Segmentation with
Transformer [63.25665813125223]
We propose RTFormer, an efficient dual-resolution transformer for real-time semantic segmenation.
It achieves better trade-off between performance and efficiency than CNN-based models.
Experiments on mainstream benchmarks demonstrate the effectiveness of our proposed RTFormer.
arXiv Detail & Related papers (2022-10-13T16:03:53Z) - LiDAR-based Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
LiDAR-based panoptic segmentation aims to parse both objects and scenes in a unified manner.
We propose the Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm.
Our proposed DS-Net achieves superior accuracies over current state-of-the-art methods.
arXiv Detail & Related papers (2020-11-24T08:44:46Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - SCG-Net: Self-Constructing Graph Neural Networks for Semantic
Segmentation [23.623276007011373]
We propose a module that learns a long-range dependency graph directly from the image and uses it to propagate contextual information efficiently.
The module is optimised via a novel adaptive diagonal enhancement method and a variational lower bound.
When incorporated into a neural network (SCG-Net), semantic segmentation is performed in an end-to-end manner and competitive performance.
arXiv Detail & Related papers (2020-09-03T12:13:09Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
We present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation.
We used ResNet based feature extractor, dilated convolutional layers in downsampling part, atrous convolutional layers in the upsampling part and used concat operation to merge them.
A new attention module is proposed to encode more contextual information and enhance the receptive field of the network.
arXiv Detail & Related papers (2020-06-30T20:19:09Z) - Learning to Predict Context-adaptive Convolution for Semantic
Segmentation [66.27139797427147]
Long-range contextual information is essential for achieving high-performance semantic segmentation.
We propose a Context-adaptive Convolution Network (CaC-Net) to predict a spatially-varying feature weighting vector.
Our CaC-Net achieves superior segmentation performance on three public datasets.
arXiv Detail & Related papers (2020-04-17T13:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.