SCG-Net: Self-Constructing Graph Neural Networks for Semantic
Segmentation
- URL: http://arxiv.org/abs/2009.01599v2
- Date: Sun, 3 Jan 2021 14:59:24 GMT
- Title: SCG-Net: Self-Constructing Graph Neural Networks for Semantic
Segmentation
- Authors: Qinghui Liu, Michael Kampffmeyer, Robert Jenssen, Arnt-B{\o}rre
Salberg
- Abstract summary: We propose a module that learns a long-range dependency graph directly from the image and uses it to propagate contextual information efficiently.
The module is optimised via a novel adaptive diagonal enhancement method and a variational lower bound.
When incorporated into a neural network (SCG-Net), semantic segmentation is performed in an end-to-end manner and competitive performance.
- Score: 23.623276007011373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capturing global contextual representations by exploiting long-range
pixel-pixel dependencies has shown to improve semantic segmentation
performance. However, how to do this efficiently is an open question as current
approaches of utilising attention schemes or very deep models to increase the
models field of view, result in complex models with large memory consumption.
Inspired by recent work on graph neural networks, we propose the
Self-Constructing Graph (SCG) module that learns a long-range dependency graph
directly from the image and uses it to propagate contextual information
efficiently to improve semantic segmentation. The module is optimised via a
novel adaptive diagonal enhancement method and a variational lower bound that
consists of a customized graph reconstruction term and a Kullback-Leibler
divergence regularization term. When incorporated into a neural network
(SCG-Net), semantic segmentation is performed in an end-to-end manner and
competitive performance (mean F1-scores of 92.0% and 89.8% respectively) on the
publicly available ISPRS Potsdam and Vaihingen datasets is achieved, with much
fewer parameters, and at a lower computational cost compared to related pure
convolutional neural network (CNN) based models.
Related papers
- Sparse Decomposition of Graph Neural Networks [20.768412002413843]
We propose an approach to reduce the number of nodes that are included during aggregation.
We achieve this through a sparse decomposition, learning to approximate node representations using a weighted sum of linearly transformed features.
We demonstrate via extensive experiments that our method outperforms other baselines designed for inference speedup.
arXiv Detail & Related papers (2024-10-25T17:52:16Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification [12.062421384484812]
Graph Convolutional Network (GCN) decouples neighborhood aggregation and feature transformation in each convolutional layer.
In this paper, we propose a new paradigm of GCN, termed Neighborhood Convolutional Network (NCN)
In this way, the model could inherit the merit of decoupled GCN for aggregating neighborhood information, at the same time, develop much more powerful feature learning modules.
arXiv Detail & Related papers (2022-11-15T02:02:51Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - RSI-Net: Two-Stream Deep Neural Network Integrating GCN and Atrous CNN
for Semantic Segmentation of High-resolution Remote Sensing Images [3.468780866037609]
Two-stream deep neural network for semantic segmentation of remote sensing images (RSI-Net) is proposed in this paper.
Experiments are implemented on the Vaihingen, Potsdam and Gaofen RSI datasets.
Results demonstrate the superior performance of RSI-Net in terms of overall accuracy, F1 score and kappa coefficient when compared with six state-of-the-art RSI semantic segmentation methods.
arXiv Detail & Related papers (2021-09-19T15:57:20Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.