NUC-Net: Non-uniform Cylindrical Partition Network for Efficient LiDAR Semantic Segmentation
- URL: http://arxiv.org/abs/2505.24634v2
- Date: Mon, 02 Jun 2025 02:51:49 GMT
- Title: NUC-Net: Non-uniform Cylindrical Partition Network for Efficient LiDAR Semantic Segmentation
- Authors: Xuzhi Wang, Wei Feng, Lingdong Kong, Liang Wan,
- Abstract summary: We propose a non-uniform cylindrical partition network named NUC-Net to tackle the challenges of LiDAR semantic segmentation.<n>Our method achieves state-of-the-art performance on Semantic KITTI and nuScenes datasets with much faster speed and much less training time.<n>Our method can be a general component for LiDAR semantic segmentation, which significantly improves both the accuracy and efficiency of the uniform counterpart by $4 times$ training faster and $2 times GPU memory reduction and $3 times$ inference speedup.
- Score: 17.280357264324376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LiDAR semantic segmentation plays a vital role in autonomous driving. Existing voxel-based methods for LiDAR semantic segmentation apply uniform partition to the 3D LiDAR point cloud to form a structured representation based on cartesian/cylindrical coordinates. Although these methods show impressive performance, the drawback of existing voxel-based methods remains in two aspects: (1) it requires a large enough input voxel resolution, which brings a large amount of computation cost and memory consumption. (2) it does not well handle the unbalanced point distribution of LiDAR point cloud. In this paper, we propose a non-uniform cylindrical partition network named NUC-Net to tackle the above challenges. Specifically, we propose the Arithmetic Progression of Interval (API) method to non-uniformly partition the radial axis and generate the voxel representation which is representative and efficient. Moreover, we propose a non-uniform multi-scale aggregation method to improve contextual information. Our method achieves state-of-the-art performance on SemanticKITTI and nuScenes datasets with much faster speed and much less training time. And our method can be a general component for LiDAR semantic segmentation, which significantly improves both the accuracy and efficiency of the uniform counterpart by $4 \times$ training faster and $2 \times$ GPU memory reduction and $3 \times$ inference speedup. We further provide theoretical analysis towards understanding why NUC is effective and how point distribution affects performance. Code is available at \href{https://github.com/alanWXZ/NUC-Net}{https://github.com/alanWXZ/NUC-Net}.
Related papers
- Sparse VideoGen2: Accelerate Video Generation with Sparse Attention via Semantic-Aware Permutation [57.56385490252605]
Diffusion Transformers (DiTs) are essential for video generation but suffer from significant latency due to the quadratic complexity of attention.<n>We propose SVG2, a training-free framework that maximizes identification accuracy and computation minimizes waste.
arXiv Detail & Related papers (2025-05-24T21:30:29Z) - FLARES: Fast and Accurate LiDAR Multi-Range Semantic Segmentation [52.89847760590189]
3D scene understanding is a critical yet challenging task in autonomous driving.<n>Recent methods leverage the range-view representation to improve processing efficiency.<n>We re-design the workflow for range-view-based LiDAR semantic segmentation.
arXiv Detail & Related papers (2025-02-13T12:39:26Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
We propose a cylindrical tri-perspective view to represent point clouds effectively and comprehensively.
Considering the distance distribution of LiDAR point clouds, we construct the tri-perspective view in the cylindrical coordinate system.
We employ spatial group pooling to maintain structural details during projection and adopt 2D backbones to efficiently process each TPV plane.
arXiv Detail & Related papers (2023-08-31T17:57:17Z) - Spatial-information Guided Adaptive Context-aware Network for Efficient
RGB-D Semantic Segmentation [9.198120596225968]
We propose an efficient lightweight encoder-decoder network that reduces the computational parameters and guarantees the robustness of the algorithm.
Experimental results on NYUv2, SUN RGB-D, and Cityscapes datasets show that our method achieves a better trade-off among segmentation accuracy, inference time, and parameters than the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-11T09:02:03Z) - LENet: Lightweight And Efficient LiDAR Semantic Segmentation Using
Multi-Scale Convolution Attention [0.0]
We propose a projection-based semantic segmentation network called LENet with an encoder-decoder structure for LiDAR-based semantic segmentation.
The encoder is composed of a novel multi-scale convolutional attention (MSCA) module with varying receptive field sizes to capture features.
We show that our proposed method is lighter, more efficient, and robust compared to state-of-the-art semantic segmentation methods.
arXiv Detail & Related papers (2023-01-11T02:51:38Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
The paper tackles the challenge by designing a general framework to construct 3D learning architectures.
The proposed approach can be applied to general backbones like PointNet and DGCNN.
Experiments on ModelNet40, ShapeNet, and the real-world dataset ScanObjectNN, demonstrated that the method achieves a great trade-off between efficiency, rotation, and accuracy.
arXiv Detail & Related papers (2022-09-13T12:12:19Z) - CENet: Toward Concise and Efficient LiDAR Semantic Segmentation for
Autonomous Driving [4.6193503399184275]
We present a textbfconcise and textbfefficient image-based semantic segmentation network, named textbfCENet.
Our pipeline achieves much better mIoU and inference performance compared with state-of-the-art models.
arXiv Detail & Related papers (2022-07-26T07:22:19Z) - CPGNet: Cascade Point-Grid Fusion Network for Real-Time LiDAR Semantic
Segmentation [8.944151935020992]
We propose Cascade Point-Grid Fusion Network (CPGNet), which ensures both effectiveness and efficiency.
CPGNet without ensemble models or TTA is comparable with the state-of-the-art RPVNet, while it runs 4.7 times faster.
arXiv Detail & Related papers (2022-04-21T06:56:30Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution.
We gather homogeneous points that have identical semantic categories and close votes for the geometric centroids.
The proposed approach is proposal-free, and instead exploits a convolution process that adapts to the spatial and semantic characteristics of each instance.
arXiv Detail & Related papers (2021-07-18T09:05:16Z) - LiDAR-based Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
LiDAR-based panoptic segmentation aims to parse both objects and scenes in a unified manner.
We propose the Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm.
Our proposed DS-Net achieves superior accuracies over current state-of-the-art methods.
arXiv Detail & Related papers (2020-11-24T08:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.