論文の概要: Active Learning of Ordinal Embeddings: A User Study on Football Data
- arxiv url: http://arxiv.org/abs/2207.12710v1
- Date: Tue, 26 Jul 2022 07:55:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-27 13:04:50.500615
- Title: Active Learning of Ordinal Embeddings: A User Study on Football Data
- Title(参考訳): 順序埋め込みのアクティブラーニング:サッカーデータを用いたユーザスタディ
- Authors: Christoffer Loeffler, Kion Fallah, Stefano Fenu, Dario Zanca, Bjoern
Eskofier, Christopher John Rozell, Christopher Mutschler
- Abstract要約: 人間は本来、未知の類似性関数を使用してラベル付けされていないデータセットのインスタンス間の距離を計測する。
この研究はディープ・メトリック・ラーニングを使用して、大規模なフットボールの軌跡データセットのアノテーションからユーザ定義の類似性関数を学習する。
- 参考スコア(独自算出の注目度): 4.856635699699126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans innately measure distance between instances in an unlabeled dataset
using an unknown similarity function. Distance metrics can only serve as proxy
for similarity in information retrieval of similar instances. Learning a good
similarity function from human annotations improves the quality of retrievals.
This work uses deep metric learning to learn these user-defined similarity
functions from few annotations for a large football trajectory dataset. We
adapt an entropy-based active learning method with recent work from triplet
mining to collect easy-to-answer but still informative annotations from human
participants and use them to train a deep convolutional network that
generalizes to unseen samples. Our user study shows that our approach improves
the quality of the information retrieval compared to a previous deep metric
learning approach that relies on a Siamese network. Specifically, we shed light
on the strengths and weaknesses of passive sampling heuristics and active
learners alike by analyzing the participants' response efficacy. To this end,
we collect accuracy, algorithmic time complexity, the participants' fatigue and
time-to-response, qualitative self-assessment and statements, as well as the
effects of mixed-expertise annotators and their consistency on model
performance and transfer-learning.
- Abstract(参考訳): 人間は、未知の類似性関数を使用してラベルのないデータセットのインスタンス間の距離をネイティブに測定する。
距離メトリクスは、類似したインスタンスの情報検索における類似性のプロキシとしてのみ機能する。
人間のアノテーションから良い類似度関数を学ぶことは、検索の質を改善する。
この研究は、ディープメトリック学習を使用して、大きなフットボール軌道データセットの注釈からユーザー定義の類似度関数を学習する。
エントロピーに基づくアクティブラーニング手法を最近の三重項鉱業の成果に応用し,人間からの情報的アノテーションを収集し,それらを用いて未確認サンプルに一般化した深層畳み込みネットワークを訓練する。
提案手法は,従来のsaheseネットワークを用いたディープメトリック学習手法に比べて,情報検索の質が向上することを示す。
具体的には,受動的サンプリングヒューリスティックとアクティブ学習者の長所と短所について,被験者の反応効果を分析して考察した。
この目的のために, 精度, アルゴリズムによる時間複雑性, 参加者の疲労, 応答時間, 質的自己評価, ステートメント, および混合実験アノテータとそれらの一貫性がモデル性能と伝達学習に与える影響を収集する。
関連論文リスト
- Reinforcement Learning from Passive Data via Latent Intentions [86.4969514480008]
我々は、下流RLを加速する機能を学ぶために、受動的データが引き続き使用できることを示す。
我々のアプローチは、意図をモデル化することで受動的データから学習する。
実験では、クロス・エボディメント・ビデオデータやYouTubeビデオなど、さまざまな形式の受動的データから学習できることを実証した。
論文 参考訳(メタデータ) (2023-04-10T17:59:05Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
時系列表現学習は、時間的ダイナミクスとスパースラベルを持つデータから表現を抽出することができる。
自己教師型タスクの利点を組み合わせた時系列表現学習手法を提案する。
本稿では,時系列分類,予測,異常検出という3つのダウンストリームタスクの枠組みについて検討する。
論文 参考訳(メタデータ) (2023-03-02T07:44:06Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
本稿では,正と負の相関関係を持つタスクに対する分散・フェデレーション学習アルゴリズムを提案する。
本アルゴリズムでは,タスク間の相関関係を自動的に計算し,コミュニケーショングラフを動的に調整して相互に有益なタスクを接続し,互いに悪影響を及ぼす可能性のあるタスクを分離する。
合成ガウスデータセットと大規模セレブ属性(CelebA)データセットについて実験を行った。
論文 参考訳(メタデータ) (2022-12-21T18:58:24Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
ディープニューラルネットワークは、新しいタスクを学んだ後、これまで学んだ知識の破滅的な忘れ込みに悩まされることが多い。
提案手法は、ドメインシフト中の新しいタスクを精度良く学習することで、DomainNetやOfficeHomeといった挑戦的なデータセットで最大10%向上する。
論文 参考訳(メタデータ) (2022-03-08T09:57:48Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - Low-Regret Active learning [64.36270166907788]
トレーニングに最も有用なラベル付きデータポイントを識別するオンライン学習アルゴリズムを開発した。
私たちの仕事の中心は、予測可能な(簡単な)インスタンスの低い後悔を達成するために調整された睡眠専門家のための効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2021-04-06T22:53:45Z) - Recognizing More Emotions with Less Data Using Self-supervised Transfer
Learning [0.0]
本稿では,音声認識のための新しい伝達学習手法を提案する。
感情のクラス毎の125のサンプルでは、8倍のデータでトレーニングされた強いベースラインよりも高い精度を達成できたのです。
論文 参考訳(メタデータ) (2020-11-11T06:18:31Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - On the Robustness of Active Learning [0.7340017786387767]
Active Learningは、機械学習アルゴリズムをトレーニングする上で最も有用なサンプルを特定する方法に関するものだ。
十分な注意とドメイン知識を持っていないことがよくあります。
そこで本研究では,Simpson の多様性指標に基づく新たな "Sum of Squared Logits" 手法を提案する。
論文 参考訳(メタデータ) (2020-06-18T09:07:23Z) - Knowledge Guided Metric Learning for Few-Shot Text Classification [22.832467388279873]
我々は,人間の知識を模倣する素早い学習に外部知識を導入することを提案する。
人間の知性に触発され,人間の知識を模倣する素早い学習に外部知識を導入することを提案する。
提案手法は,最新の数ショットのテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-04-04T10:56:26Z) - Inter- and Intra-domain Knowledge Transfer for Related Tasks in Deep
Character Recognition [2.320417845168326]
ImageNetデータセットでディープニューラルネットワークを事前トレーニングすることは、ディープラーニングモデルをトレーニングするための一般的なプラクティスである。
1つのタスクで事前トレーニングを行い、新しいタスクで再トレーニングするテクニックは、トランスファーラーニング(transfer learning)と呼ばれる。
本稿では,文字認識タスクにおけるDeep Transfer Learningの有効性について分析する。
論文 参考訳(メタデータ) (2020-01-02T14:18:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。