Efficient Learning of Accurate Surrogates for Simulations of Complex Systems
- URL: http://arxiv.org/abs/2207.12855v3
- Date: Fri, 17 May 2024 16:26:55 GMT
- Title: Efficient Learning of Accurate Surrogates for Simulations of Complex Systems
- Authors: A. Diaw, M. McKerns, I. Sagert, L. G. Stanton, M. S. Murillo,
- Abstract summary: We introduce an online learning method empowered by sampling-driven sampling.
It ensures that all turning points on the model response surface are included in the training data.
We apply our method to simulations of nuclear matter to demonstrate that highly accurate surrogates can be reliably auto-generated.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning methods are increasingly used to build computationally inexpensive surrogates for complex physical models. The predictive capability of these surrogates suffers when data are noisy, sparse, or time-dependent. As we are interested in finding a surrogate that provides valid predictions of any potential future model evaluations, we introduce an online learning method empowered by optimizer-driven sampling. The method has two advantages over current approaches. First, it ensures that all turning points on the model response surface are included in the training data. Second, after any new model evaluations, surrogates are tested and "retrained" (updated) if the "score" drops below a validity threshold. Tests on benchmark functions reveal that optimizer-directed sampling generally outperforms traditional sampling methods in terms of accuracy around local extrema, even when the scoring metric favors overall accuracy. We apply our method to simulations of nuclear matter to demonstrate that highly accurate surrogates for the nuclear equation of state can be reliably auto-generated from expensive calculations using a few model evaluations.
Related papers
- Stabilizing Subject Transfer in EEG Classification with Divergence
Estimation [17.924276728038304]
We propose several graphical models to describe an EEG classification task.
We identify statistical relationships that should hold true in an idealized training scenario.
We design regularization penalties to enforce these relationships in two stages.
arXiv Detail & Related papers (2023-10-12T23:06:52Z) - Value-Consistent Representation Learning for Data-Efficient
Reinforcement Learning [105.70602423944148]
We propose a novel method, called value-consistent representation learning (VCR), to learn representations that are directly related to decision-making.
Instead of aligning this imagined state with a real state returned by the environment, VCR applies a $Q$-value head on both states and obtains two distributions of action values.
It has been demonstrated that our methods achieve new state-of-the-art performance for search-free RL algorithms.
arXiv Detail & Related papers (2022-06-25T03:02:25Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
We propose an efficient alternative for optimal synthetic data generation based on a novel differentiable approximation of the objective.
We demonstrate that the proposed method finds the optimal data distribution faster (up to $50times$), with significantly reduced training data generation (up to $30times$) and better accuracy ($+8.7%$) on real-world test datasets than previous methods.
arXiv Detail & Related papers (2020-08-16T11:36:11Z) - Continuous Optimization Benchmarks by Simulation [0.0]
Benchmark experiments are required to test, compare, tune, and understand optimization algorithms.
Data from previous evaluations can be used to train surrogate models which are then used for benchmarking.
We show that the spectral simulation method enables simulation for continuous optimization problems.
arXiv Detail & Related papers (2020-08-14T08:50:57Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z) - Combining data assimilation and machine learning to emulate a dynamical
model from sparse and noisy observations: a case study with the Lorenz 96
model [0.0]
The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network.
Data assimilation is used to optimally combine a surrogate model with sparse data.
The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model.
Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach.
arXiv Detail & Related papers (2020-01-06T12:26:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.