Bayesian Surrogate Training on Multiple Data Sources: A Hybrid Modeling Strategy
- URL: http://arxiv.org/abs/2412.11875v1
- Date: Mon, 16 Dec 2024 15:27:28 GMT
- Title: Bayesian Surrogate Training on Multiple Data Sources: A Hybrid Modeling Strategy
- Authors: Philipp Reiser, Paul-Christian Bürkner, Anneli Guthke,
- Abstract summary: We propose two novel approaches to integrate simulation data and real-world measurement data during surrogate training.
The first method trains separate surrogate models for each data source and combines their predictive distributions, while the second incorporates both data sources by training a single surrogate.
- Score: 1.2435663633224636
- License:
- Abstract: Surrogate models are often used as computationally efficient approximations to complex simulation models, enabling tasks such as solving inverse problems, sensitivity analysis, and probabilistic forward predictions, which would otherwise be computationally infeasible. During training, surrogate parameters are fitted such that the surrogate reproduces the simulation model's outputs as closely as possible. However, the simulation model itself is merely a simplification of the real-world system, often missing relevant processes or suffering from misspecifications e.g., in inputs or boundary conditions. Hints about these might be captured in real-world measurement data, and yet, we typically ignore those hints during surrogate building. In this paper, we propose two novel probabilistic approaches to integrate simulation data and real-world measurement data during surrogate training. The first method trains separate surrogate models for each data source and combines their predictive distributions, while the second incorporates both data sources by training a single surrogate. We show the conceptual differences and benefits of the two approaches through both synthetic and real-world case studies. The results demonstrate the potential of these methods to improve predictive accuracy, predictive coverage, and to diagnose problems in the underlying simulation model. These insights can improve system understanding and future model development.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Amortized Probabilistic Conditioning for Optimization, Simulation and Inference [20.314865219675056]
Amortized Conditioning Engine (ACE)
A new transformer-based meta-learning model that explicitly represents latent variables of interest.
ACE affords conditioning on both observed data and interpretable latent variables, the inclusion of priors at runtime, and outputs predictive distributions for discrete and continuous data and latents.
arXiv Detail & Related papers (2024-10-20T07:22:54Z) - All-in-one simulation-based inference [19.41881319338419]
We present a new amortized inference method -- the Simformer -- which overcomes current limitations.
The Simformer outperforms current state-of-the-art amortized inference approaches on benchmark tasks.
It can be applied to models with function-valued parameters, it can handle inference scenarios with missing or unstructured data, and it can sample arbitrary conditionals of the joint distribution of parameters and data.
arXiv Detail & Related papers (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Efficient Learning of Accurate Surrogates for Simulations of Complex Systems [0.0]
We introduce an online learning method empowered by sampling-driven sampling.
It ensures that all turning points on the model response surface are included in the training data.
We apply our method to simulations of nuclear matter to demonstrate that highly accurate surrogates can be reliably auto-generated.
arXiv Detail & Related papers (2022-07-11T20:51:11Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Transfer learning suppresses simulation bias in predictive models built
from sparse, multi-modal data [15.587831925516957]
Many problems in science, engineering, and business require making predictions based on very few observations.
To build a robust predictive model, these sparse data may need to be augmented with simulated data, especially when the design space is multidimensional.
We combine recent developments in deep learning to build more robust predictive models from multimodal data.
arXiv Detail & Related papers (2021-04-19T23:28:32Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.