論文の概要: A Proper Orthogonal Decomposition approach for parameters reduction of
Single Shot Detector networks
- arxiv url: http://arxiv.org/abs/2207.13551v1
- Date: Wed, 27 Jul 2022 14:43:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-28 13:16:01.733187
- Title: A Proper Orthogonal Decomposition approach for parameters reduction of
Single Shot Detector networks
- Title(参考訳): 単ショット検出器ネットワークのパラメータ削減のための適切な直交分解法
- Authors: Laura Meneghetti and Nicola Demo and Gianluigi Rozza
- Abstract要約: 本稿では,古典的モデルオーダー削減手法であるProper Orthogonal Decompositionに基づく次元削減フレームワークを提案する。
我々は、PASCAL VOCデータセットを用いてSSD300アーキテクチャにそのようなフレームワークを適用し、ネットワーク次元の削減と、転送学習コンテキストにおけるネットワークの微調整における顕著な高速化を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a major breakthrough in artificial intelligence and deep learning,
Convolutional Neural Networks have achieved an impressive success in solving
many problems in several fields including computer vision and image processing.
Real-time performance, robustness of algorithms and fast training processes
remain open problems in these contexts. In addition object recognition and
detection are challenging tasks for resource-constrained embedded systems,
commonly used in the industrial sector. To overcome these issues, we propose a
dimensionality reduction framework based on Proper Orthogonal Decomposition, a
classical model order reduction technique, in order to gain a reduction in the
number of hyperparameters of the net. We have applied such framework to SSD300
architecture using PASCAL VOC dataset, demonstrating a reduction of the network
dimension and a remarkable speedup in the fine-tuning of the network in a
transfer learning context.
- Abstract(参考訳): 人工知能とディープラーニングの大きなブレークスルーとして、Convolutional Neural Networksは、コンピュータビジョンや画像処理など、さまざまな分野で多くの問題を解決している。
リアルタイムのパフォーマンス、アルゴリズムの堅牢性、高速トレーニングプロセスは、これらの文脈では未解決のままである。
さらに、産業分野で一般的に使用される資源制約の組込みシステムにおいて、オブジェクト認識と検出は難しい課題である。
これらの問題を克服するため,本論文では,ネットのハイパーパラメータ数を減らすために,古典的なモデルオーダー削減手法である固有直交分解に基づく次元性低減フレームワークを提案する。
このようなフレームワークをssd300アーキテクチャにpascal vocデータセットを用いて適用し,ネットワーク次元の削減と,転送学習コンテキストにおけるネットワークの微調整の大幅な高速化を実証した。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications [0.0]
本研究は,多忠実度アプリケーションのための新しい分解能不変モデルオーダー削減戦略を提案する。
我々はこの研究で開発された新しいニューラルネットワーク層、グラフフィードフォワードネットワークに基づいてアーキテクチャを構築した。
パラメトリックな偏微分方程式に対する自己エンコーダに基づく還元戦略において,異なるメッシュサイズでのトレーニングとテストの能力を利用する。
論文 参考訳(メタデータ) (2024-06-05T18:31:37Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像において顕著な性能を得た。
本稿では,注目ブロックを効率的に活用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-17T11:06:29Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
本稿では、オブジェクト分類タスクにおける消失勾配を低減するために、SIReを定義したインターレース型マルチタスク学習戦略を提案する。
提案手法は、自動エンコーダを介して入力画像構造を保存することにより、畳み込みニューラルネットワーク(CNN)を直接改善する。
提案手法を検証するため、SIRe戦略を介して単純なCNNと有名なネットワークの様々な実装を拡張し、CIFAR100データセットで広範囲にテストする。
論文 参考訳(メタデータ) (2021-10-06T13:54:49Z) - Algorithm Unrolling for Massive Access via Deep Neural Network with
Theoretical Guarantee [30.86806523281873]
大規模アクセスはIoT(Internet of Things)ネットワークにおける重要な設計課題である。
我々は、マルチアンテナベースステーション(BS)と多数の単一アンテナIoTデバイスを備えたIoTネットワークの無許可アップリンク伝送を検討する。
本稿では,低計算複雑性と高ロバスト性を実現するために,ディープニューラルネットワークに基づく新しいアルゴリズムアンローリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-19T05:23:05Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
本研究は,大規模深度マップとエゴモーションを予測可能な教師なし学習フレームワークを提案する。
本結果は,KITTI運転データセットの複数シーケンスにおける現在の最先端技術と比較して,高い性能を示す。
論文 参考訳(メタデータ) (2020-11-02T22:26:58Z) - DBQ: A Differentiable Branch Quantizer for Lightweight Deep Neural
Networks [4.358626952482686]
本稿では, 効率的な3成分系ドット製品エンジンにシームレスにマッピングできる新しい非一様量子化器を提案する。
提案する量子化器 (DBQ) は,MobileNetV1, MobileNetV2, ShuffleNetV2 などの軽量ネットワークを積極的に定量化するという,突進的な課題に対処する。
DBQは、トレーニングオーバーヘッドを最小限に抑えながら、最先端の成果を達成し、最適な(最適に最適化された)精度/複雑さのトレードオフを提供する。
論文 参考訳(メタデータ) (2020-07-19T23:50:09Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。