RE-POSE: Synergizing Reinforcement Learning-Based Partitioning and Offloading for Edge Object Detection
- URL: http://arxiv.org/abs/2501.09465v1
- Date: Thu, 16 Jan 2025 10:56:45 GMT
- Title: RE-POSE: Synergizing Reinforcement Learning-Based Partitioning and Offloading for Edge Object Detection
- Authors: Jianrui Shi, Yong Zhao, Zeyang Cui, Xiaoming Shen, Minhang Zeng, Xiaojie Liu,
- Abstract summary: Real-time object detection on edge devices presents significant challenges due to their limited computational resources and the high demands of deep neural network (DNN)-based detection models.
This paper introduces RE-POSE, a framework designed to optimize the accuracy-latency trade-off in resource-constrained edge environments.
- Score: 3.2805151494259563
- License:
- Abstract: Object detection plays a crucial role in smart video analysis, with applications ranging from autonomous driving and security to smart cities. However, achieving real-time object detection on edge devices presents significant challenges due to their limited computational resources and the high demands of deep neural network (DNN)-based detection models, particularly when processing high-resolution video. Conventional strategies, such as input down-sampling and network up-scaling, often compromise detection accuracy for faster performance or lead to higher inference latency. To address these issues, this paper introduces RE-POSE, a Reinforcement Learning (RL)-Driven Partitioning and Edge Offloading framework designed to optimize the accuracy-latency trade-off in resource-constrained edge environments. Our approach features an RL-Based Dynamic Clustering Algorithm (RL-DCA) that partitions video frames into non-uniform blocks based on object distribution and the computational characteristics of DNNs. Furthermore, a parallel edge offloading scheme is implemented to distribute these blocks across multiple edge servers for concurrent processing. Experimental evaluations show that RE-POSE significantly enhances detection accuracy and reduces inference latency, surpassing existing methods.
Related papers
- Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios.
Existing edge detection methods face challenges: difficulty balancing detection precision with lightweight models, limited adaptability, and insufficient real-world validation.
We propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments.
arXiv Detail & Related papers (2024-12-24T07:28:10Z) - CREST: An Efficient Conjointly-trained Spike-driven Framework for Event-based Object Detection Exploiting Spatiotemporal Dynamics [7.696109414724968]
Spiking neural networks (SNNs) are promising for event-based object recognition and detection.
Existing SNN frameworks often fail to handle multi-scaletemporal features, leading to increased data redundancy and reduced accuracy.
We propose CREST, a novel conjointly-trained spike-driven framework to exploit event-based object detection.
arXiv Detail & Related papers (2024-12-17T04:33:31Z) - Deep Learning and Hybrid Approaches for Dynamic Scene Analysis, Object Detection and Motion Tracking [0.0]
This project aims to develop a robust video surveillance system, which can segment videos into smaller clips based on the detection of activities.
It uses CCTV footage, for example, to record only major events-like the appearance of a person or a thief-so that storage is optimized and digital searches are easier.
arXiv Detail & Related papers (2024-12-05T07:44:40Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Edge Computing Enabled Real-Time Video Analysis via Adaptive
Spatial-Temporal Semantic Filtering [18.55091203660391]
This paper proposes a novel edge computing enabled real-time video analysis system for intelligent visual devices.
The proposed system consists of a tracking-assisted object detection module (TAODM) and a region of interesting module (ROIM)
TAODM adaptively determines the offloading decision to process each video frame locally with a tracking algorithm or to offload it to the edge server inferred by an object detection model.
arXiv Detail & Related papers (2024-02-29T07:42:03Z) - RIDE: Real-time Intrusion Detection via Explainable Machine Learning
Implemented in a Memristor Hardware Architecture [24.824596231020585]
We propose a packet-level network intrusion detection solution that makes use of Recurrent Autoencoders to integrate an arbitrary-length sequence of packets into a more compact joint feature embedding.
We show that our approach leads to an extremely efficient, real-time solution with high detection accuracy at the packet level.
arXiv Detail & Related papers (2023-11-27T17:30:19Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Parallel Detection for Efficient Video Analytics at the Edge [5.547133811014004]
Deep Neural Network (DNN) trained object detectors are widely deployed in mission-critical systems for real time video analytics at the edge.
A common performance requirement in mission-critical edge services is the near real-time latency of online object detection on edge devices.
This paper addresses these problems by exploiting multi-model multi-device detection parallelism for fast object detection in edge systems.
arXiv Detail & Related papers (2021-07-27T02:50:46Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.