Physical Systems Modeled Without Physical Laws
- URL: http://arxiv.org/abs/2207.13702v1
- Date: Tue, 26 Jul 2022 20:51:20 GMT
- Title: Physical Systems Modeled Without Physical Laws
- Authors: David Noever, Samuel Hyams
- Abstract summary: Tree-based machine learning methods can emulate desired outputs without "knowing" the complex backing involved in the simulations.
We specifically focus on predicting specific spatial-temporal data between two simulation outputs and increasing spatial resolution to generalize the physics predictions to finer test grids without the computational costs of repeating the numerical calculation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-based simulations typically operate with a combination of complex
differentiable equations and many scientific and geometric inputs. Our work
involves gathering data from those simulations and seeing how well tree-based
machine learning methods can emulate desired outputs without "knowing" the
complex backing involved in the simulations. The selected physics-based
simulations included Navier-Stokes, stress analysis, and electromagnetic field
lines to benchmark performance as numerical and statistical algorithms. We
specifically focus on predicting specific spatial-temporal data between two
simulation outputs and increasing spatial resolution to generalize the physics
predictions to finer test grids without the computational costs of repeating
the numerical calculation.
Related papers
- Embed and Emulate: Contrastive representations for simulation-based inference [11.543221890134399]
This paper introduces Embed and Emulate (E&E), a new simulation-based inference ( SBI) method based on contrastive learning.
E&E learns a low-dimensional latent embedding of the data and a corresponding fast emulator in the latent space.
We demonstrate superior performance over existing methods in a realistic, non-identifiable parameter estimation task.
arXiv Detail & Related papers (2024-09-27T02:37:01Z) - Exponential improvements in the simulation of lattice gauge theories using near-optimal techniques [0.0]
We conduct an in-depth analysis of the cost of simulating Abelian and non-Abelian lattice gauge theories.
We provide explicit circuit constructions, as well as T-gate counts and qubit counts for the entire simulation.
arXiv Detail & Related papers (2024-05-16T19:36:49Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Spatio-Temporal Surrogates for Interaction of a Jet with High
Explosives: Part I -- Analysis with a Small Sample Size [0.0]
We use a two-dimensional problem of a jet interacting with high explosives to understand how we can build high-quality surrogates.
The characteristics of our data set are unique - the vector-valued outputs from each simulation are available at over two million spatial locations.
We show how we analyze these extremely large data-sets, set the parameters for the algorithms used in the analysis, and use simple ways to improve the accuracy of thetemporal-temporal surrogates.
arXiv Detail & Related papers (2023-07-03T23:10:23Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
We present a machine learning-based data generator framework tailored to aid researchers who utilize simulations to examine various physical systems or processes.
Our approach involves a two-step process: first, we train a supervised predictive model using a limited simulated dataset to predict simulation outcomes.
Subsequently, a reinforcement learning agent is trained to generate accurate, simulation-like data by leveraging the supervised model.
arXiv Detail & Related papers (2023-05-16T17:31:50Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Simulation-Based Parallel Training [55.41644538483948]
We present our ongoing work to design a training framework that alleviates those bottlenecks.
It generates data in parallel with the training process.
We present a strategy to mitigate this bias with a memory buffer.
arXiv Detail & Related papers (2022-11-08T09:31:25Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
We use end-to-end deep learning to improve approximations inside computational fluid dynamics for modeling two-dimensional turbulent flows.
For both direct numerical simulation of turbulence and large eddy simulation, our results are as accurate as baseline solvers with 8-10x finer resolution in each spatial dimension.
Our approach exemplifies how scientific computing can leverage machine learning and hardware accelerators to improve simulations without sacrificing accuracy or generalization.
arXiv Detail & Related papers (2021-01-28T19:10:00Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.