論文の概要: DeforHMR: Vision Transformer with Deformable Cross-Attention for 3D Human Mesh Recovery
- arxiv url: http://arxiv.org/abs/2411.11214v1
- Date: Mon, 18 Nov 2024 00:46:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:09.587215
- Title: DeforHMR: Vision Transformer with Deformable Cross-Attention for 3D Human Mesh Recovery
- Title(参考訳): DeforHMR:3次元メッシュ回復のための変形可能なクロスアテンション付き視覚変換器
- Authors: Jaewoo Heo, George Hu, Zeyu Wang, Serena Yeung-Levy,
- Abstract要約: DeforHMRは、人間のポーズパラメータの予測を強化するために設計された、新しい回帰ベースの単分子HMRフレームワークである。
DeforHMRは、トランスフォーマーデコーダ内の新しいクエリ非依存の変形可能なクロスアテンション機構を活用する。
広範に使用されている3D HMRベンチマーク3DPW と RICH 上で,単一フレーム回帰に基づく手法の最先端性能を実現する。
- 参考スコア(独自算出の注目度): 2.1653492349540784
- License:
- Abstract: Human Mesh Recovery (HMR) is an important yet challenging problem with applications across various domains including motion capture, augmented reality, and biomechanics. Accurately predicting human pose parameters from a single image remains a challenging 3D computer vision task. In this work, we introduce DeforHMR, a novel regression-based monocular HMR framework designed to enhance the prediction of human pose parameters using deformable attention transformers. DeforHMR leverages a novel query-agnostic deformable cross-attention mechanism within the transformer decoder to effectively regress the visual features extracted from a frozen pretrained vision transformer (ViT) encoder. The proposed deformable cross-attention mechanism allows the model to attend to relevant spatial features more flexibly and in a data-dependent manner. Equipped with a transformer decoder capable of spatially-nuanced attention, DeforHMR achieves state-of-the-art performance for single-frame regression-based methods on the widely used 3D HMR benchmarks 3DPW and RICH. By pushing the boundary on the field of 3D human mesh recovery through deformable attention, we introduce an new, effective paradigm for decoding local spatial information from large pretrained vision encoders in computer vision.
- Abstract(参考訳): HMR(Human Mesh Recovery)は、モーションキャプチャ、拡張現実、バイオメカニクスなど、さまざまな領域にまたがるアプリケーションにおいて、重要な課題である。
1枚の画像から人間のポーズパラメータを正確に予測することは、難しい3Dコンピュータビジョンタスクのままだ。
本研究では,変形性アテンショントランスフォーマーを用いた人間のポーズパラメータの予測向上を目的とした,新しい回帰型モノクラーHMRフレームワークであるDeforHMRを紹介する。
DeforHMRは、トランスデコーダ内の新しいクエリ非依存の変形可能なクロスアテンション機構を活用し、凍結事前訓練された視覚変換器(ViT)エンコーダから抽出された視覚的特徴を効果的に回復させる。
提案した変形可能なクロスアテンション機構により、モデルはより柔軟かつデータ依存的に、関連する空間的特徴に対応することができる。
DeforHMRは空間的に注意を向けられるトランスフォーマーデコーダを備えており、広く使われている3次元HMRベンチマーク3DPWとRICHの1フレーム回帰に基づく手法の最先端性能を実現している。
変形可能な注意を通して3次元メッシュ回復の分野の境界を推し進めることで、コンピュータビジョンにおける大きな事前学習された視覚エンコーダから局所空間情報を復号するための、新しい効果的なパラダイムを導入する。
関連論文リスト
- HorGait: A Hybrid Model for Accurate Gait Recognition in LiDAR Point Cloud Planar Projections [8.56443762544299]
HorGaitは、LiDARからの3Dポイント雲の平面投影における歩行認識のためのTransformerアーキテクチャを備えたハイブリッドモデルである。
SUSTech1Kデータセット上のTransformerアーキテクチャメソッド間の最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-10-11T02:12:41Z) - MVSBoost: An Efficient Point Cloud-based 3D Reconstruction [4.282795945742752]
拡張現実や仮想現実、医用画像、映画特殊効果など、様々な応用において、効率的で正確な3D再構成が不可欠である。
従来のMulti-View Stereo (MVS) システムはこれらのアプリケーションには基本的だが、暗黙の3次元シーンモデリングは複雑なトポロジや連続面を扱う新しい可能性をもたらした。
論文 参考訳(メタデータ) (2024-06-19T13:02:17Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
本稿では,視覚のみのサラウンドビュー知覚に適したジオメトリ強化OccupancyネットワークであるGEOccについて述べる。
提案手法は,Occ3D-nuScenesデータセット上で,画像解像度が最小で,画像バックボーンが最大である状態-Of-The-Art性能を実現する。
論文 参考訳(メタデータ) (2024-05-17T07:31:20Z) - 3D Hand Mesh Recovery from Monocular RGB in Camera Space [3.0453197258042213]
本研究では,ルート相対格子とルート回復タスクの並列処理を行うネットワークモデルを提案する。
暗黙的な学習手法を2次元ヒートマップに適用し、異なるサブタスク間の2次元キューの互換性を向上させる。
提案モデルは最先端のモデルに匹敵する。
論文 参考訳(メタデータ) (2024-05-12T05:36:37Z) - SMPLer: Taming Transformers for Monocular 3D Human Shape and Pose Estimation [74.07836010698801]
この問題に対処するために,SMPLベースのトランスフォーマーフレームワーク(SMPLer)を提案する。
SMPLerは、切り離された注意操作とSMPLベースのターゲット表現の2つの重要な要素を組み込んでいる。
SMPLerの既存の3次元人体形状に対する効果とポーズ推定方法の実証実験を行った。
論文 参考訳(メタデータ) (2024-04-23T17:59:59Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
動的シーン再構築のための新しい動き認識拡張フレームワークを提案する。
具体的には,まず3次元ガウス運動と画素レベルの流れの対応性を確立する。
より厳密な最適化問題を示す先行的な変形に基づくパラダイムに対して,過渡対応変形補助モジュールを提案する。
論文 参考訳(メタデータ) (2024-03-18T03:46:26Z) - W-HMR: Monocular Human Mesh Recovery in World Space with Weak-Supervised Calibration [57.37135310143126]
モノクロ画像からの3次元運動回復のための従来の手法は、カメラ座標に依存するため、しばしば不足する。
W-HMRは、身体の歪み情報に基づいて「適切な」焦点長を予測する弱教師付き校正法である。
また,世界空間における可視的再構築のために,身体の向きを補正する OrientCorrect モジュールを提案する。
論文 参考訳(メタデータ) (2023-11-29T09:02:07Z) - Cross-Attention of Disentangled Modalities for 3D Human Mesh Recovery
with Transformers [17.22112222736234]
トランスフォーマーエンコーダアーキテクチャは近年,モノキュラー3次元メッシュ再構築における最先端の成果を達成している。
メモリのオーバーヘッドが大きく、推論速度が遅いため、そのようなモデルを実用的な用途に展開することは困難である。
本稿では,FastMETROと呼ばれる単一画像からの3次元メッシュ再構成のためのトランスフォーマエンコーダデコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-27T22:54:09Z) - THUNDR: Transformer-based 3D HUmaN Reconstruction with Markers [67.8628917474705]
THUNDRは、人の3Dポーズと形状を再構築するトランスフォーマーベースのディープニューラルネットワーク手法である。
完全教師付きモデルと自己教師型モデルの両方に対して,Human3.6Mと3DPWの最先端結果を示す。
野生で収集された難易度の高い人間のポーズに対して, 非常に堅固な3次元再構成性能を観察した。
論文 参考訳(メタデータ) (2021-06-17T09:09:24Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
本研究では,パラメトリックボディモデルと自由形深部暗黙関数を組み合わせたパラメトリックモデル記述型暗黙表現(PaMIR)を提案する。
本手法は, 挑戦的なポーズや衣料品のタイプにおいて, 画像に基づく3次元再構築のための最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-08T02:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。