On the Multidimensional Random Subset Sum Problem
- URL: http://arxiv.org/abs/2207.13944v1
- Date: Thu, 28 Jul 2022 08:10:43 GMT
- Title: On the Multidimensional Random Subset Sum Problem
- Authors: Luca Becchetti (DIAG), Arthur Carvalho Walraven da Cuhna (COATI),
Andrea Clementi, Francesco d'Amore (COATI), Hicham Lesfari (COATI), Emanuele
Natale (COATI), Luca Trevisan
- Abstract summary: In the Random Subset Sum Problem, given $n$ i.i.d. random variables $X_1,..., X_n$, we wish to approximate any point $z in [-1,1]$ as the sum of a subset $X_i_1(z),..., X_i_s(z)$ of them, up to error $varepsilon cdot.
We prove that, in $d$ dimensions, $n = O(d3log frac 1varepsilon cdot
- Score: 0.9007371440329465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the Random Subset Sum Problem, given $n$ i.i.d. random variables $X_1,
..., X_n$, we wish to approximate any point $z \in [-1,1]$ as the sum of a
suitable subset $X_{i_1(z)}, ..., X_{i_s(z)}$ of them, up to error
$\varepsilon$. Despite its simple statement, this problem is of fundamental
interest to both theoretical computer science and statistical mechanics. More
recently, it gained renewed attention for its implications in the theory of
Artificial Neural Networks. An obvious multidimensional generalisation of the
problem is to consider $n$ i.i.d.\ $d$-dimensional random vectors, with the
objective of approximating every point $\mathbf{z} \in [-1,1]^d$. Rather
surprisingly, after Lueker's 1998 proof that, in the one-dimensional setting,
$n=O(\log \frac 1\varepsilon)$ samples guarantee the approximation property
with high probability, little progress has been made on achieving the above
generalisation. In this work, we prove that, in $d$ dimensions, $n = O(d^3\log
\frac 1\varepsilon \cdot (\log \frac 1\varepsilon + \log d))$ samples suffice
for the approximation property to hold with high probability. As an application
highlighting the potential interest of this result, we prove that a recently
proposed neural network model exhibits \emph{universality}: with high
probability, the model can approximate any neural network within a polynomial
overhead in the number of parameters.
Related papers
- Efficient Statistics With Unknown Truncation, Polynomial Time Algorithms, Beyond Gaussians [7.04316974339151]
We study the estimation of distributional parameters when samples are shown only if they fall in some unknown set.
We develop tools that may be of independent interest, including a reduction from PAC learning with positive and unlabeled samples to PAC learning with positive and negative samples.
arXiv Detail & Related papers (2024-10-02T15:21:07Z) - Iterative thresholding for non-linear learning in the strong $\varepsilon$-contamination model [3.309767076331365]
We derive approximation bounds for learning single neuron models using thresholded descent.
We also study the linear regression problem, where $sigma(mathbfx) = mathbfx$.
arXiv Detail & Related papers (2024-09-05T16:59:56Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Learning (Very) Simple Generative Models Is Hard [45.13248517769758]
We show that no-time algorithm can solve problem even when output coordinates of $mathbbRdtobbRd'$ are one-hidden-layer ReLU networks with $mathrmpoly(d)$ neurons.
Key ingredient in our proof is an ODE-based construction of a compactly supported, piecewise-linear function $f$ with neurally-bounded slopes such that the pushforward of $mathcalN(0,1)$ under $f$ matches all low-degree moments of $mathcal
arXiv Detail & Related papers (2022-05-31T17:59:09Z) - Unique Games hardness of Quantum Max-Cut, and a conjectured
vector-valued Borell's inequality [6.621324975749854]
We show that the noise stability of a function $f:mathbbRn to -1, 1$ is the expected value of $f(boldsymbolx) cdot f(boldsymboly)$.
We conjecture that the expected value of $langle f(boldsymbolx), f(boldsymboly)rangle$ is minimized by the function $f(x) = x_leq k / Vert x_leq k /
arXiv Detail & Related papers (2021-11-01T20:45:42Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
We study the problem of PAC learning halfspaces on $mathbbRd$ with Massart noise under Gaussian marginals.
Our results qualitatively characterize the complexity of learning halfspaces in the Massart model.
arXiv Detail & Related papers (2021-08-19T16:16:48Z) - From Smooth Wasserstein Distance to Dual Sobolev Norm: Empirical
Approximation and Statistical Applications [18.618590805279187]
We show that $mathsfW_p(sigma)$ is controlled by a $pth order smooth dual Sobolev $mathsfd_p(sigma)$.
We derive the limit distribution of $sqrtnmathsfd_p(sigma)(hatmu_n,mu)$ in all dimensions $d$, when $mu$ is sub-Gaussian.
arXiv Detail & Related papers (2021-01-11T17:23:24Z) - Sparse sketches with small inversion bias [79.77110958547695]
Inversion bias arises when averaging estimates of quantities that depend on the inverse covariance.
We develop a framework for analyzing inversion bias, based on our proposed concept of an $(epsilon,delta)$-unbiased estimator for random matrices.
We show that when the sketching matrix $S$ is dense and has i.i.d. sub-gaussian entries, the estimator $(epsilon,delta)$-unbiased for $(Atop A)-1$ with a sketch of size $m=O(d+sqrt d/
arXiv Detail & Related papers (2020-11-21T01:33:15Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
Given a discrete probability measure supported on $N$ atoms and a set of $n$ real-valued functions, there exists a probability measure that is supported on a subset of $n+1$ of the original $N$ atoms.
We give a simple geometric characterization of barycenters via negative cones and derive a randomized algorithm that computes this new measure by "greedy geometric sampling"
We then study its properties, and benchmark it on synthetic and real-world data to show that it can be very beneficial in the $Ngg n$ regime.
arXiv Detail & Related papers (2020-06-02T16:38:36Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.