Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings
- URL: http://arxiv.org/abs/2207.14042v2
- Date: Mon, 20 May 2024 08:37:02 GMT
- Title: Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings
- Authors: Miguel Ángel Muñoz-Bañón, Jan-Hendrik Pauls, Haohao Hu, Christoph Stiller, Francisco A. Candelas, Fernando Torres,
- Abstract summary: This paper presents a complete pipeline for resolving ambiguities during the data association.
Its core is a robust self-tuning data association that adapts the search area depending on the entropy of the measurements.
We evaluate our method on real data from urban and rural scenarios around the city of Karlsruhe in Germany.
- Score: 44.4879068879732
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Localization in aerial imagery-based maps offers many advantages, such as global consistency, geo-referenced maps, and the availability of publicly accessible data. However, the landmarks that can be observed from both aerial imagery and on-board sensors is limited. This leads to ambiguities or aliasing during the data association. Building upon a highly informative representation (that allows efficient data association), this paper presents a complete pipeline for resolving these ambiguities. Its core is a robust self-tuning data association that adapts the search area depending on the entropy of the measurements. Additionally, to smooth the final result, we adjust the information matrix for the associated data as a function of the relative transform produced by the data association process. We evaluate our method on real data from urban and rural scenarios around the city of Karlsruhe in Germany. We compare state-of-the-art outlier mitigation methods with our self-tuning approach, demonstrating a considerable improvement, especially for outer-urban scenarios.
Related papers
- Reconsidering utility: unveiling the limitations of synthetic mobility data generation algorithms in real-life scenarios [49.1574468325115]
We evaluate the utility of five state-of-the-art synthesis approaches in terms of real-world applicability.
We focus on so-called trip data that encode fine granular urban movements such as GPS-tracked taxi rides.
One model fails to produce data within reasonable time and another generates too many jumps to meet the requirements for map matching.
arXiv Detail & Related papers (2024-07-03T16:08:05Z) - Unsupervised Landmark Discovery Using Consistency Guided Bottleneck [63.624186864522315]
We introduce a consistency-guided bottleneck in an image reconstruction-based pipeline.
We propose obtaining pseudo-supervision via forming landmark correspondence across images.
The consistency then modulates the uncertainty of the discovered landmarks in the generation of adaptive heatmaps.
arXiv Detail & Related papers (2023-09-19T10:57:53Z) - Trust your Good Friends: Source-free Domain Adaptation by Reciprocal
Neighborhood Clustering [50.46892302138662]
We address the source-free domain adaptation problem, where the source pretrained model is adapted to the target domain in the absence of source data.
Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters.
We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood.
arXiv Detail & Related papers (2023-09-01T15:31:18Z) - Reconstructing Spatiotemporal Data with C-VAEs [49.1574468325115]
Conditional continuous representation of moving regions is commonly used.
In this work, we explore the capabilities of Conditional Varitemporal Autoencoder (C-VAE) models to generate realistic representations of regions' evolution.
arXiv Detail & Related papers (2023-07-12T15:34:10Z) - Deep residential representations: Using unsupervised learning to unlock
elevation data for geo-demographic prediction [0.0]
LiDAR technology can be used to provide detailed three-dimensional elevation maps of urban and rural landscapes.
To date, airborne LiDAR imaging has been predominantly confined to the environmental and archaeological domains.
We consider the suitability of this data not just on its own but also as a source of data in combination with demographic features, thus providing a realistic use case for the embeddings.
arXiv Detail & Related papers (2021-12-02T17:10:52Z) - GANmapper: geographical content filling [0.0]
We present a new method to create spatial data using a generative adversarial network (GAN)
Our contribution uses coarse and widely available geospatial data to create maps of less available features at the finer scale in the built environment.
We employ land use data and road networks as input to generate building footprints, and conduct experiments in 9 cities around the world.
arXiv Detail & Related papers (2021-08-07T05:50:54Z) - Attention-based Vehicle Self-Localization with HD Feature Maps [13.368212933272238]
We present a vehicle self-localization method using point-based deep neural networks.
Our approach processes measurements and point features, i.e. landmarks, from a high-definition digital map to infer the vehicle's pose.
arXiv Detail & Related papers (2021-07-16T09:25:25Z) - Interpretable Locally Adaptive Nearest Neighbors [8.052709336750821]
We develop a method that allows learning locally adaptive metrics.
These local metrics not only improve performance but are naturally interpretable.
We conduct a number of experiments on synthetic data sets, and show its usefulness on real-world benchmark data sets.
arXiv Detail & Related papers (2020-11-08T05:27:50Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
Training networks to perform metric relocalization traditionally requires accurate image correspondences.
We propose a self-supervised solution, which exploits a key insight: localizing a query image within a map should yield the same absolute pose, regardless of the reference image used for registration.
We evaluate our framework on synthetic and real-world data, showing our approach outperforms other supervised methods when a limited amount of ground-truth information is available.
arXiv Detail & Related papers (2020-11-01T19:24:27Z) - Gaussian Process Gradient Maps for Loop-Closure Detection in
Unstructured Planetary Environments [17.276441789710574]
The ability to recognize previously mapped locations is an essential feature for autonomous systems.
Unstructured planetary-like environments pose a major challenge to these systems due to the similarity of the terrain.
This paper presents a method to solve the loop closure problem using only spatial information.
arXiv Detail & Related papers (2020-09-01T04:41:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.