GANmapper: geographical content filling
- URL: http://arxiv.org/abs/2108.04232v1
- Date: Sat, 7 Aug 2021 05:50:54 GMT
- Title: GANmapper: geographical content filling
- Authors: Abraham Noah Wu, Filip Biljecki
- Abstract summary: We present a new method to create spatial data using a generative adversarial network (GAN)
Our contribution uses coarse and widely available geospatial data to create maps of less available features at the finer scale in the built environment.
We employ land use data and road networks as input to generate building footprints, and conduct experiments in 9 cities around the world.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new method to create spatial data using a generative adversarial
network (GAN). Our contribution uses coarse and widely available geospatial
data to create maps of less available features at the finer scale in the built
environment, bypassing their traditional acquisition techniques (e.g. satellite
imagery or land surveying). In the work, we employ land use data and road
networks as input to generate building footprints, and conduct experiments in 9
cities around the world. The method, which we implement in a tool we release
openly, enables generating approximate maps of the urban form, and it is
generalisable to augment other types of geoinformation, enhancing the
completeness and quality of spatial data infrastructure. It may be especially
useful in locations missing detailed and high-resolution data and those that
are mapped with uncertain or heterogeneous quality, such as much of
OpenStreetMap. The quality of the results is influenced by the urban form and
scale. In most cases, experiments suggest promising performance as the method
tends to truthfully indicate the locations, amount, and shape of buildings. The
work has the potential to support several applications, such as energy,
climate, and urban morphology studies in areas previously lacking required
data.
Related papers
- GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
We present GeoLLM, a novel method that can effectively extract geospatial knowledge from large language models.
We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods.
Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe.
arXiv Detail & Related papers (2023-10-10T00:03:23Z) - City Foundation Models for Learning General Purpose Representations from OpenStreetMap [16.09047066527081]
We present CityFM, a framework to train a foundation model within a selected geographical area of interest, such as a city.
CityFM relies solely on open data from OpenStreetMap, and produces multimodal representations of entities of different types, spatial, visual, and textual information.
In all the experiments, CityFM achieves performance superior to, or on par with, the baselines.
arXiv Detail & Related papers (2023-10-01T05:55:30Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings [44.4879068879732]
This paper presents a complete pipeline for resolving ambiguities during the data association.
Its core is a robust self-tuning data association that adapts the search area depending on the entropy of the measurements.
We evaluate our method on real data from urban and rural scenarios around the city of Karlsruhe in Germany.
arXiv Detail & Related papers (2022-07-28T12:29:39Z) - A Visual Analytics System for Profiling Urban Land Use Evolution [5.053505466956614]
Urban Chronicles is an open-source web-based visual analytics system that enables interactive exploration of changes in land use patterns.
We show the capabilities of the system by exploring the data over several years at different scales.
arXiv Detail & Related papers (2021-12-12T02:36:54Z) - Deep residential representations: Using unsupervised learning to unlock
elevation data for geo-demographic prediction [0.0]
LiDAR technology can be used to provide detailed three-dimensional elevation maps of urban and rural landscapes.
To date, airborne LiDAR imaging has been predominantly confined to the environmental and archaeological domains.
We consider the suitability of this data not just on its own but also as a source of data in combination with demographic features, thus providing a realistic use case for the embeddings.
arXiv Detail & Related papers (2021-12-02T17:10:52Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - OpenStreetMap: Challenges and Opportunities in Machine Learning and
Remote Sensing [66.23463054467653]
We present a review of recent methods based on machine learning to improve and use OpenStreetMap data.
We believe that OSM can change the way we interpret remote sensing data and that the synergy with machine learning can scale participatory map making.
arXiv Detail & Related papers (2020-07-13T09:58:14Z) - Road Mapping in Low Data Environments with OpenStreetMap [0.3162999570707049]
A comprehensive, up-to-date mapping of the geographical distribution of roads has the potential to act as an indicator for broader economic development.
This work investigates the viability of high resolution satellite imagery and crowd-sourced resources like OpenStreetMap in the construction of such a mapping.
arXiv Detail & Related papers (2020-06-14T19:39:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.