Image sensing with multilayer, nonlinear optical neural networks
- URL: http://arxiv.org/abs/2207.14293v1
- Date: Wed, 27 Jul 2022 21:00:31 GMT
- Title: Image sensing with multilayer, nonlinear optical neural networks
- Authors: Tianyu Wang, Mandar M. Sohoni, Logan G. Wright, Martin M. Stein,
Shi-Yuan Ma, Tatsuhiro Onodera, Maxwell G. Anderson, and Peter L. McMahon
- Abstract summary: An emerging image-sensing paradigm breaks this delineation between data collection and analysis.
By optically encoding images into a compressed, low-dimensional latent space suitable for efficient post-analysis, these image sensors can operate with fewer pixels and fewer photons.
We demonstrate a multilayer ONN pre-processor for image sensing, using a commercial image intensifier as a parallel optoelectronic, optical-to-optical nonlinear activation function.
- Score: 4.252754174399026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical imaging is commonly used for both scientific and technological
applications across industry and academia. In image sensing, a measurement,
such as of an object's position, is performed by computational analysis of a
digitized image. An emerging image-sensing paradigm breaks this delineation
between data collection and analysis by designing optical components to perform
not imaging, but encoding. By optically encoding images into a compressed,
low-dimensional latent space suitable for efficient post-analysis, these image
sensors can operate with fewer pixels and fewer photons, allowing
higher-throughput, lower-latency operation. Optical neural networks (ONNs)
offer a platform for processing data in the analog, optical domain. ONN-based
sensors have however been limited to linear processing, but nonlinearity is a
prerequisite for depth, and multilayer NNs significantly outperform shallow NNs
on many tasks. Here, we realize a multilayer ONN pre-processor for image
sensing, using a commercial image intensifier as a parallel optoelectronic,
optical-to-optical nonlinear activation function. We demonstrate that the
nonlinear ONN pre-processor can achieve compression ratios of up to 800:1 while
still enabling high accuracy across several representative computer-vision
tasks, including machine-vision benchmarks, flow-cytometry image
classification, and identification of objects in real scenes. In all cases we
find that the ONN's nonlinearity and depth allowed it to outperform a purely
linear ONN encoder. Although our experiments are specialized to ONN sensors for
incoherent-light images, alternative ONN platforms should facilitate a range of
ONN sensors. These ONN sensors may surpass conventional sensors by
pre-processing optical information in spatial, temporal, and/or spectral
dimensions, potentially with coherent and quantum qualities, all natively in
the optical domain.
Related papers
- Digital-analog hybrid matrix multiplication processor for optical neural
networks [11.171425574890765]
We propose a digital-analog hybrid optical computing architecture for optical neural networks (ONNs)
By introducing the logic levels and decisions based on thresholding, the calculation precision can be significantly enhanced.
We have demonstrated an unprecedented 16-bit calculation precision for high-definition image processing, with a pixel error rate (PER) as low as $1.8times10-3$ at a signal-to-noise ratio (SNR) of 18.2 dB.
arXiv Detail & Related papers (2024-01-26T18:42:57Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
We introduce an innovative Deep Learning-based Quantum Sensing scheme.
It enables optical quantum sensors to attain Heisenberg limit (HL) in agnostic environments.
Our findings offer a new lens through which to accelerate optical quantum sensing tasks.
arXiv Detail & Related papers (2023-11-13T09:46:05Z) - Free-Space Optical Spiking Neural Network [0.0]
We introduce the Free-space Optical deep Spiking Convolutional Neural Network (OSCNN)
This novel approach draws inspiration from computational models of the human eye.
Our results demonstrate promising performance with minimal latency and power consumption compared to their electronic ONN counterparts.
arXiv Detail & Related papers (2023-11-08T09:41:14Z) - Classification robustness to common optical aberrations [64.08840063305313]
This paper proposes OpticsBench, a benchmark for investigating robustness to realistic, practically relevant optical blur effects.
Experiments on ImageNet show that for a variety of different pre-trained DNNs, the performance varies strongly compared to disk-shaped kernels.
We show on ImageNet-100 with OpticsAugment that can be increased by using optical kernels as data augmentation.
arXiv Detail & Related papers (2023-08-29T08:36:00Z) - Deep Dynamic Scene Deblurring from Optical Flow [53.625999196063574]
Deblurring can provide visually more pleasant pictures and make photography more convenient.
It is difficult to model the non-uniform blur mathematically.
We develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features.
arXiv Detail & Related papers (2023-01-18T06:37:21Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Implicit Neural Representations (INRs) encode continuous multi-media data via multi-layer perceptrons.
Existing works manipulate such continuous representations via processing on their discretized instance.
We propose an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR.
arXiv Detail & Related papers (2022-10-17T06:29:07Z) - Physics-aware Differentiable Discrete Codesign for Diffractive Optical
Neural Networks [12.952987240366781]
This work proposes a novel device-to-system hardware-software codesign framework, which enables efficient training of Diffractive optical neural networks (DONNs)
Gumbel-Softmax is employed to enable differentiable discrete mapping from real-world device parameters into the forward function of DONNs.
The results have demonstrated that our proposed framework offers significant advantages over conventional quantization-based methods.
arXiv Detail & Related papers (2022-09-28T17:13:28Z) - Single-Shot Optical Neural Network [55.41644538483948]
'Weight-stationary' analog optical and electronic hardware has been proposed to reduce the compute resources required by deep neural networks.
We present a scalable, single-shot-per-layer weight-stationary optical processor.
arXiv Detail & Related papers (2022-05-18T17:49:49Z) - Experimentally realized in situ backpropagation for deep learning in
nanophotonic neural networks [0.7627023515997987]
We design mass-manufacturable silicon photonic neural networks that cascade our custom designed "photonic mesh" accelerator.
We demonstrate in situ backpropagation for the first time to solve classification tasks.
Our findings suggest a new training paradigm for photonics-accelerated artificial intelligence based entirely on a physical analog of the popular backpropagation technique.
arXiv Detail & Related papers (2022-05-17T17:13:50Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
Photonic neural networks perform brain-inspired computations using photons instead of electrons.
We propose an all-optical graph representation learning architecture, termed diffractive graph neural network (DGNN)
We demonstrate the use of DGNN extracted features for node and graph-level classification tasks with benchmark databases and achieve superior performance.
arXiv Detail & Related papers (2022-04-23T02:29:48Z) - Photonic neural field on a silicon chip: large-scale, high-speed
neuro-inspired computing and sensing [0.0]
Photonic neural networks have significant potential for high-speed neural processing with low latency and ultralow energy consumption.
We propose the concept of a photonic neural field and implement it experimentally on a silicon chip to realize highly scalable neuro-inspired computing.
In this study, we use the on-chip photonic neural field as a reservoir of information and demonstrate a high-speed chaotic time-series prediction with low errors.
arXiv Detail & Related papers (2021-05-22T09:28:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.