Digital-analog hybrid matrix multiplication processor for optical neural
networks
- URL: http://arxiv.org/abs/2401.15061v1
- Date: Fri, 26 Jan 2024 18:42:57 GMT
- Title: Digital-analog hybrid matrix multiplication processor for optical neural
networks
- Authors: Xiansong Meng, Deming Kong, Kwangwoong Kim, Qiuchi Li, Po Dong,
Ingemar J. Cox, Christina Lioma, and Hao Hu
- Abstract summary: We propose a digital-analog hybrid optical computing architecture for optical neural networks (ONNs)
By introducing the logic levels and decisions based on thresholding, the calculation precision can be significantly enhanced.
We have demonstrated an unprecedented 16-bit calculation precision for high-definition image processing, with a pixel error rate (PER) as low as $1.8times10-3$ at a signal-to-noise ratio (SNR) of 18.2 dB.
- Score: 11.171425574890765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The computational demands of modern AI have spurred interest in optical
neural networks (ONNs) which offer the potential benefits of increased speed
and lower power consumption. However, current ONNs face various challenges,most
significantly a limited calculation precision (typically around 4 bits) and the
requirement for high-resolution signal format converters (digital-to-analogue
conversions (DACs) and analogue-to-digital conversions (ADCs)). These
challenges are inherent to their analog computing nature and pose significant
obstacles in practical implementation. Here, we propose a digital-analog hybrid
optical computing architecture for ONNs, which utilizes digital optical inputs
in the form of binary words. By introducing the logic levels and decisions
based on thresholding, the calculation precision can be significantly enhanced.
The DACs for input data can be removed and the resolution of the ADCs can be
greatly reduced. This can increase the operating speed at a high calculation
precision and facilitate the compatibility with microelectronics. To validate
our approach, we have fabricated a proof-of-concept photonic chip and built up
a hybrid optical processor (HOP) system for neural network applications. We
have demonstrated an unprecedented 16-bit calculation precision for
high-definition image processing, with a pixel error rate (PER) as low as
$1.8\times10^{-3}$ at an signal-to-noise ratio (SNR) of 18.2 dB. We have also
implemented a convolutional neural network for handwritten digit recognition
that shows the same accuracy as the one achieved by a desktop computer. The
concept of the digital-analog hybrid optical computing architecture offers a
methodology that could potentially be applied to various ONN implementations
and may intrigue new research into efficient and accurate domain-specific
optical computing architectures for neural networks.
Related papers
- Transferable polychromatic optical encoder for neural networks [13.311727599288524]
In this paper, we demonstrate an optical encoder that can perform convolution simultaneously in three color channels during the image capture.
Such an optical encoding results in 24,000 times reduction in computational operations, with a state-of-the art classification accuracy (73.2%) in free-space optical system.
arXiv Detail & Related papers (2024-11-05T00:49:47Z) - Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
We experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform.
An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOps.
We study the compute scaling of our hybrid optical approach, and demonstrate a potential advantage for ultra-deep and wide neural networks.
arXiv Detail & Related papers (2024-09-01T12:48:47Z) - 1-bit Quantized On-chip Hybrid Diffraction Neural Network Enabled by Authentic All-optical Fully-connected Architecture [4.594367761345624]
This study introduces the Hybrid Diffraction Neural Network (HDNN), a novel architecture that incorporates matrix multiplication into DNNs.
utilizing a singular phase modulation layer and an amplitude modulation layer, the trained neural network demonstrated remarkable accuracies of 96.39% and 89% in digit recognition tasks.
arXiv Detail & Related papers (2024-04-11T02:54:17Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - Sophisticated deep learning with on-chip optical diffractive tensor
processing [5.081061839052458]
Photonic integrated circuits provide an efficient approach to mitigate bandwidth limitations and power-wall brought by electronic counterparts.
We propose an optical computing architecture enabled by on-chip diffraction to implement convolutional acceleration, termed optical convolution unit (OCU)
With OCU as the fundamental unit, we build an optical convolutional neural network (oCNN) to implement two popular deep learning tasks: classification and regression.
arXiv Detail & Related papers (2022-12-20T03:33:26Z) - Single-Shot Optical Neural Network [55.41644538483948]
'Weight-stationary' analog optical and electronic hardware has been proposed to reduce the compute resources required by deep neural networks.
We present a scalable, single-shot-per-layer weight-stationary optical processor.
arXiv Detail & Related papers (2022-05-18T17:49:49Z) - Experimentally realized in situ backpropagation for deep learning in
nanophotonic neural networks [0.7627023515997987]
We design mass-manufacturable silicon photonic neural networks that cascade our custom designed "photonic mesh" accelerator.
We demonstrate in situ backpropagation for the first time to solve classification tasks.
Our findings suggest a new training paradigm for photonics-accelerated artificial intelligence based entirely on a physical analog of the popular backpropagation technique.
arXiv Detail & Related papers (2022-05-17T17:13:50Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
Photonic neural networks perform brain-inspired computations using photons instead of electrons.
We propose an all-optical graph representation learning architecture, termed diffractive graph neural network (DGNN)
We demonstrate the use of DGNN extracted features for node and graph-level classification tasks with benchmark databases and achieve superior performance.
arXiv Detail & Related papers (2022-04-23T02:29:48Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Large-scale neuromorphic optoelectronic computing with a reconfigurable
diffractive processing unit [38.898230519968116]
We propose an optoelectronic reconfigurable computing paradigm by constructing a diffractive processing unit.
It can efficiently support different neural networks and achieve a high model complexity with millions of neurons.
Our prototype system built with off-the-shelf optoelectronic components surpasses the performance of state-of-the-art graphics processing units.
arXiv Detail & Related papers (2020-08-26T16:34:58Z) - Computational optimization of convolutional neural networks using
separated filters architecture [69.73393478582027]
We consider a convolutional neural network transformation that reduces computation complexity and thus speedups neural network processing.
Use of convolutional neural networks (CNN) is the standard approach to image recognition despite the fact they can be too computationally demanding.
arXiv Detail & Related papers (2020-02-18T17:42:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.