Towards Domain-agnostic Depth Completion
- URL: http://arxiv.org/abs/2207.14466v2
- Date: Mon, 8 Apr 2024 15:51:37 GMT
- Title: Towards Domain-agnostic Depth Completion
- Authors: Guangkai Xu, Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus, Simon Chen, Jia-Wang Bian,
- Abstract summary: Existing depth completion methods are often targeted at a specific sparse depth type and generalize poorly across task domains.
We present a method to complete sparse/semi-dense, noisy, and potentially low-resolution depth maps obtained by various range sensors.
Our method shows superior cross-domain generalization ability against state-of-the-art depth completion methods.
- Score: 28.25756709062647
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing depth completion methods are often targeted at a specific sparse depth type and generalize poorly across task domains. We present a method to complete sparse/semi-dense, noisy, and potentially low-resolution depth maps obtained by various range sensors, including those in modern mobile phones, or by multi-view reconstruction algorithms. Our method leverages a data-driven prior in the form of a single image depth prediction network trained on large-scale datasets, the output of which is used as an input to our model. We propose an effective training scheme where we simulate various sparsity patterns in typical task domains. In addition, we design two new benchmarks to evaluate the generalizability and the robustness of depth completion methods. Our simple method shows superior cross-domain generalization ability against state-of-the-art depth completion methods, introducing a practical solution to high-quality depth capture on a mobile device. The code is available at: https://github.com/YvanYin/FillDepth.
Related papers
- Scale Propagation Network for Generalizable Depth Completion [16.733495588009184]
We propose a novel scale propagation normalization (SP-Norm) method to propagate scales from input to output.
We also develop a new network architecture based on SP-Norm and the ConvNeXt V2 backbone.
Our model consistently achieves the best accuracy with faster speed and lower memory when compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-10-24T03:53:06Z) - Pixel-Aligned Multi-View Generation with Depth Guided Decoder [86.1813201212539]
We propose a novel method for pixel-level image-to-multi-view generation.
Unlike prior work, we incorporate attention layers across multi-view images in the VAE decoder of a latent video diffusion model.
Our model enables better pixel alignment across multi-view images.
arXiv Detail & Related papers (2024-08-26T04:56:41Z) - Depth Prompting for Sensor-Agnostic Depth Estimation [19.280536006736575]
We design a novel depth prompt module to allow the desirable feature representation according to new depth distributions.
Our method helps the pretrained model to be free from restraint of depth scan range and to provide absolute scale depth maps.
arXiv Detail & Related papers (2024-05-20T08:19:08Z) - Revisiting Deformable Convolution for Depth Completion [40.45231083385708]
Depth completion aims to generate high-quality dense depth maps from sparse depth maps.
Previous work usually employs RGB images as guidance, and introduces iterative spatial propagation to refine estimated coarse depth maps.
We propose an effective architecture that leverages deformable kernel convolution as a single-pass refinement module.
arXiv Detail & Related papers (2023-08-03T17:59:06Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - 360 Depth Estimation in the Wild -- The Depth360 Dataset and the SegFuse
Network [35.03201732370496]
Single-view depth estimation from omnidirectional images has gained popularity with its wide range of applications such as autonomous driving and scene reconstruction.
In this work, we first establish a large-scale dataset with varied settings called Depth360 to tackle the training data problem.
We then propose an end-to-end two-branch multi-task learning network, SegFuse, that mimics the human eye to effectively learn from the dataset.
arXiv Detail & Related papers (2022-02-16T11:56:31Z) - Towards Unpaired Depth Enhancement and Super-Resolution in the Wild [121.96527719530305]
State-of-the-art data-driven methods of depth map super-resolution rely on registered pairs of low- and high-resolution depth maps of the same scenes.
We consider an approach to depth map enhancement based on learning from unpaired data.
arXiv Detail & Related papers (2021-05-25T16:19:16Z) - Depth Completion using Plane-Residual Representation [84.63079529738924]
We introduce a novel way of interpreting depth information with the closest depth plane label $p$ and a residual value $r$, as we call it, Plane-Residual (PR) representation.
By interpreting depth information in PR representation and using our corresponding depth completion network, we were able to acquire improved depth completion performance with faster computation.
arXiv Detail & Related papers (2021-04-15T10:17:53Z) - DDR-Net: Learning Multi-Stage Multi-View Stereo With Dynamic Depth Range [2.081393321765571]
We propose a Dynamic Depth Range Network ( DDR-Net) to determine the depth range hypotheses dynamically.
In our DDR-Net, we first build an initial depth map at the coarsest resolution of an image across the entire depth range.
We develop a novel loss strategy, which utilizes learned dynamic depth ranges to generate refined depth maps.
arXiv Detail & Related papers (2021-03-26T05:52:38Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z) - DiverseDepth: Affine-invariant Depth Prediction Using Diverse Data [110.29043712400912]
We present a method for depth estimation with monocular images, which can predict high-quality depth on diverse scenes up to an affine transformation.
Experiments show that our method outperforms previous methods on 8 datasets by a large margin with the zero-shot test setting.
arXiv Detail & Related papers (2020-02-03T05:38:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.