A Hybrid Complex-valued Neural Network Framework with Applications to
Electroencephalogram (EEG)
- URL: http://arxiv.org/abs/2207.14799v1
- Date: Thu, 28 Jul 2022 00:51:07 GMT
- Title: A Hybrid Complex-valued Neural Network Framework with Applications to
Electroencephalogram (EEG)
- Authors: Hang Du, Rebecca Pillai Riddell, Xiaogang Wang
- Abstract summary: The proposed neural network architecture consists of one complex-valued convolutional layer, two real-valued convolutional layers, and three fully connected layers.
We validate our approach using two simulated EEG signals and a benchmark data set and compare it with two widely used frameworks.
- Score: 16.578387039499386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article, we present a new EEG signal classification framework by
integrating the complex-valued and real-valued Convolutional Neural
Network(CNN) with discrete Fourier transform (DFT). The proposed neural network
architecture consists of one complex-valued convolutional layer, two
real-valued convolutional layers, and three fully connected layers. Our method
can efficiently utilize the phase information contained in the DFT. We validate
our approach using two simulated EEG signals and a benchmark data set and
compare it with two widely used frameworks. Our method drastically reduces the
number of parameters used and improves accuracy when compared with the existing
methods in classifying benchmark data sets, and significantly improves
performance in classifying simulated EEG signals.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals [2.0650230600617534]
The proposed model exploits multiple representations of the wireless signal as inputs to the network.
An attention layer is used after the BiLSTM layer to emphasize the important temporal features.
The experimental results on the recent and realistic RML22 dataset demonstrate the superior performance of the proposed model with an accuracy up to around 99%.
arXiv Detail & Related papers (2024-08-14T01:17:19Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - vEEGNet: learning latent representations to reconstruct EEG raw data via
variational autoencoders [3.031375888004876]
We propose vEEGNet, a DL architecture with two modules, i.e., an unsupervised module based on variational autoencoders to extract a latent representation of the data, and a supervised module based on a feed-forward neural network to classify different movements.
We show state-of-the-art classification performance, and the ability to reconstruct both low-frequency and middle-range components of the raw EEG.
arXiv Detail & Related papers (2023-11-16T19:24:40Z) - Multi-scale Transformer-based Network for Emotion Recognition from Multi
Physiological Signals [11.479653866646762]
This paper presents an efficient Multi-scale Transformer-based approach for the task of Emotion recognition from Physiological data.
Our approach involves applying a Multi-modal technique combined with scaling data to establish the relationship between internal body signals and human emotions.
Our model achieves decent results on the CASE dataset of the EPiC competition, with an RMSE score of 1.45.
arXiv Detail & Related papers (2023-05-01T11:10:48Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - ConTraNet: A single end-to-end hybrid network for EEG-based and
EMG-based human machine interfaces [0.0]
We introduce a single hybrid model called ConTraNet, which is based on CNN and Transformer architectures.
ConTraNet is robust to learn distinct features from different HMI paradigms and generalizes well as compared to the current state of the art algorithms.
arXiv Detail & Related papers (2022-06-21T18:55:50Z) - ScalingNet: extracting features from raw EEG data for emotion
recognition [4.047737925426405]
We propose a novel convolutional layer allowing to adaptively extract effective data-driven spectrogram-like features from raw EEG signals.
The proposed neural network architecture based on the scaling layer, references as ScalingNet, has achieved the state-of-the-art result across the established DEAP benchmark dataset.
arXiv Detail & Related papers (2021-02-07T08:54:27Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.