vEEGNet: learning latent representations to reconstruct EEG raw data via
variational autoencoders
- URL: http://arxiv.org/abs/2312.09449v1
- Date: Thu, 16 Nov 2023 19:24:40 GMT
- Title: vEEGNet: learning latent representations to reconstruct EEG raw data via
variational autoencoders
- Authors: Alberto Zancanaro, Giulia Cisotto, Italo Zoppis, Sara Lucia Manzoni
- Abstract summary: We propose vEEGNet, a DL architecture with two modules, i.e., an unsupervised module based on variational autoencoders to extract a latent representation of the data, and a supervised module based on a feed-forward neural network to classify different movements.
We show state-of-the-art classification performance, and the ability to reconstruct both low-frequency and middle-range components of the raw EEG.
- Score: 3.031375888004876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalografic (EEG) data are complex multi-dimensional time-series
that are very useful in many applications, from diagnostics to driving
brain-computer interface systems. Their classification is still a challenging
task, due to the inherent within- and between-subject variability and their low
signal-to-noise ratio. On the other hand, the reconstruction of raw EEG data is
even more difficult because of the high temporal resolution of these signals.
Recent literature has proposed numerous machine and deep learning models that
could classify, e.g., different types of movements, with an accuracy in the
range 70% to 80% (with 4 classes). On the other hand, a limited number of works
targeted the reconstruction problem, with very limited results. In this work,
we propose vEEGNet, a DL architecture with two modules, i.e., an unsupervised
module based on variational autoencoders to extract a latent representation of
the data, and a supervised module based on a feed-forward neural network to
classify different movements. To build the encoder and the decoder of VAE we
exploited the well-known EEGNet network. We implemented two slightly different
architectures of vEEGNet, thus showing state-of-the-art classification
performance, and the ability to reconstruct both low-frequency and middle-range
components of the raw EEG. Although preliminary, this work is promising as we
found out that the low-frequency reconstructed signals are consistent with the
so-called motor-related cortical potentials, well-known motor-related EEG
patterns and we could improve over previous literature by reconstructing faster
EEG components, too. Further investigations are needed to explore the
potentialities of vEEGNet in reconstructing the full EEG data, generating new
samples, and studying the relationship between classification and
reconstruction performance.
Related papers
- RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEG stands for Robust Inter-Subject Electrode Implantation Variability iEEG.
We developed an iEEG decoder model that can be applied across multiple patients' data without requiring the coordinates of electrode for each patient.
Our analysis shows that the performance of RISE-iEEG is 10% higher than that of HTNet and EEGNet in terms of F1 score.
arXiv Detail & Related papers (2024-08-12T18:33:19Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - EEGEncoder: Advancing BCI with Transformer-Based Motor Imagery Classification [11.687193535939798]
Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices.
Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise.
This paper introduces EEGEncoder, a deep learning framework that employs modified transformers and TCNs to surmount these limitations.
arXiv Detail & Related papers (2024-04-23T09:51:24Z) - DTP-Net: Learning to Reconstruct EEG signals in Time-Frequency Domain by
Multi-scale Feature Reuse [7.646218090238708]
We present a fully convolutional neural architecture, called DTP-Net, which consists of a Densely Connected Temporal Pyramid (DTP) sandwiched between a pair of learnable time-frequency transformations.
EEG signals are easily corrupted by various artifacts, making artifact removal crucial for improving signal quality in scenarios such as disease diagnosis and brain-computer interface (BCI)
Extensive experiments conducted on two public semi-simulated datasets demonstrate the effective artifact removal performance of DTP-Net.
arXiv Detail & Related papers (2023-11-27T11:09:39Z) - hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications [3.031375888004876]
Two main issues challenge the existing DL-based modeling methods for EEG.
High variability between subjects and low signal-to-noise ratio make it difficult to ensure a good quality in the EEG data.
We propose two variational autoencoder models, namely vEEGNet-ver3 and hvEEGNet, to target the problem of high-fidelity EEG reconstruction.
arXiv Detail & Related papers (2023-11-20T15:36:31Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - EEG-ITNet: An Explainable Inception Temporal Convolutional Network for
Motor Imagery Classification [0.5616884466478884]
We propose an end-to-end deep learning architecture called EEG-ITNet.
Our model can extract rich spectral, spatial, and temporal information from multi-channel EEG signals.
EEG-ITNet shows up to 5.9% improvement in the classification accuracy in different scenarios.
arXiv Detail & Related papers (2022-04-14T13:18:43Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.