Simplifying a classical-quantum algorithm interpolation with quantum
singular value transformations
- URL: http://arxiv.org/abs/2207.14810v3
- Date: Mon, 29 May 2023 17:52:48 GMT
- Title: Simplifying a classical-quantum algorithm interpolation with quantum
singular value transformations
- Authors: Duarte Magano, Miguel Mur\c{c}a
- Abstract summary: We show that the scaling of $alpha$-QPE can be naturally and succinctly derived within framework of Quantum Singular Value Transformation.
The better the approximation to the sign function, the fewer samples one needs to determine the sign accurately.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of Phase Estimation (or Amplitude Estimation) admits a quadratic
quantum speedup. Wang, Higgott and Brierley [2019, Phys. Rev. Lett. 122 140504]
have shown that there is a continuous trade-off between quantum speedup and
circuit depth (by defining a family of algorithms known as $\alpha$-QPE). In
this work, we show that the scaling of $\alpha$-QPE can be naturally and
succinctly derived within the framework of Quantum Singular Value
Transformation (QSVT). From the QSVT perspective, a greater number of coherent
oracle calls translates into a better polynomial approximation to the sign
function, which is the key routine for solving Phase Estimation. The better the
approximation to the sign function, the fewer samples one needs to determine
the sign accurately. With this idea, we simplify the proof of $\alpha$-QPE,
while providing a new interpretation of the interpolation parameters, and show
that QSVT is a promising framework for reasoning about classical-quantum
interpolations.
Related papers
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Halving the Cost of Quantum Algorithms with Randomization [0.138120109831448]
Quantum signal processing (QSP) provides a systematic framework for implementing a transformation of a linear operator.
Recent works have developed randomized compiling, a technique that promotes a unitary gate to a quantum channel.
Our algorithm implements a probabilistic mixture of randomizeds, strategically chosen so that the average evolution converges to that of a target function, with an error quadratically smaller than that of an equivalent individual.
arXiv Detail & Related papers (2024-09-05T17:56:51Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Q-Newton: Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent [37.59299233291882]
We propose Q-Newton, a hybrid quantum-classical scheduler for accelerating neural network training with Newton's GD.
Q-Newton utilizes a streamlined scheduling module that coordinates between quantum and classical linear solvers.
Our evaluation showcases the potential for Q-Newton to significantly reduce the total training time compared to commonly used quantum machines.
arXiv Detail & Related papers (2024-04-30T23:55:03Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
We take inspiration from Kearns' SQ oracle and Valiant's weak evaluation oracle.
We introduce an extensive yet intuitive framework that yields unconditional lower bounds for learning from evaluation queries.
arXiv Detail & Related papers (2023-10-26T18:23:21Z) - Generalized Quantum Signal Processing [0.6768558752130311]
We present a Generalized Quantum Signal Processing approach, employing general SU(2) rotations as our signal processing operators.
Our approach lifts all practical restrictions on the family of achievable transformations, with the sole remaining condition being that $|P|leq 1$.
In cases where only $P$ is known, we provide an efficient GPU optimization capable of identifying in under a minute of time, a corresponding $Q$ for degree on the order of $107$.
arXiv Detail & Related papers (2023-08-03T01:51:52Z) - Robust black-box quantum-state preparation via quantum signal processing [0.0]
Black-box quantum-state preparation is a variant of quantum-state preparation where we want to construct an $n$-qubit state $|psi_crangle propto sum_x c(x) |xrangle$ with the amplitudes $c(x)$ given as a (quantum) oracle.
We use recent techniques, namely quantum signal processing (QSP) and quantum singular value transform (QSVT), to construct a new algorithm that prepares $|psi_crangle$ without the need to carry out coherent arithmetic.
arXiv Detail & Related papers (2023-05-08T13:37:25Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Improving the variational quantum eigensolver using variational
adiabatic quantum computing [0.0]
variational quantumsampling (VAQC) is a hybrid quantum-classical algorithm for finding a Hamiltonian minimum eigenvalue of a quantum circuit.
We show that VAQC can provide more accurate solutions than "plain" VQE, for the evaluation.
arXiv Detail & Related papers (2021-02-04T20:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.