Entanglement of Disjoint Intervals in Dual-Unitary Circuits: Exact Results
- URL: http://arxiv.org/abs/2408.16750v2
- Date: Tue, 19 Nov 2024 14:41:31 GMT
- Title: Entanglement of Disjoint Intervals in Dual-Unitary Circuits: Exact Results
- Authors: Alessandro Foligno, Bruno Bertini,
- Abstract summary: The growth of the entanglement between a disjoint subsystem and its complement after a quantum quench is regarded as a dynamical chaos indicator.
We show that for almost all dual unitary circuits the entanglement dynamics agrees with what is expected for chaotic systems.
Despite having many conserved charges, charge-conserving dual-unitary circuits are in general not Yang-Baxter integrable.
- Score: 49.1574468325115
- License:
- Abstract: The growth of the entanglement between a disjoint subsystem and its complement after a quantum quench is regarded as a dynamical chaos indicator. Namely, it is expected to show qualitatively different behaviours depending on whether the underlying microscopic dynamics is chaotic or integrable. So far, however, this could only be verified in the context of conformal field theories. Here we present an exact confirmation of this expectation in a class of interacting microscopic Floquet systems on the lattice, i.e., dual-unitary circuits. These systems can either have zero or a super extensive number of conserved charges: the latter case is achieved via fine-tuning. We show that, for almost all dual unitary circuits the asymptotic entanglement dynamics agrees with what is expected for chaotic systems. On the other hand, if we require the systems to have conserved charges, we find that the entanglement displays the qualitatively different behaviour expected for integrable systems. Interestingly, despite having many conserved charges, charge-conserving dual-unitary circuits are in general not Yang-Baxter integrable.
Related papers
- Entanglement in dual unitary quantum circuits with impurities [0.0]
We investigate entanglement dynamics in a quantum circuit perturbed by an impurity.
We compute entanglement entropy for both a semi-infinite and a finite subsystem within a finite distance of the impurity.
We show that such non-monotonic behavior can arise even in random chaotic circuits.
arXiv Detail & Related papers (2024-10-04T13:57:01Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Interacting bosons in a triple well: Preface of many-body quantum chaos [0.0]
We investigate the onset of quantum chaos in a triple-well model that moves away from integrability as its potential gets tilted.
Even in its deepest chaotic regime, the system presents features reminiscent of integrability.
arXiv Detail & Related papers (2021-11-26T19:00:03Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - False signals of chaos from quantum probes [0.0]
We demonstrate that two-time correlation functions, which are generalizations of out-of-time-ordered correlators, can show 'false-flags' of chaos.
We analyze a system of bosons trapped in a double-well potential and probed by a quantum dot.
arXiv Detail & Related papers (2021-08-20T22:36:06Z) - Universal set of Observables for Forecasting Physical Systems through
Causal Embedding [0.0]
We demonstrate when and how an entire left-infinite orbit of an underlying dynamical system or observations can be uniquely represented by a pair of elements in a different space.
The collection of such pairs is derived from a driven dynamical system and is used to learn a function which together with the driven system would: (i.) determine a system that is topologically conjugate to the underlying system.
arXiv Detail & Related papers (2021-05-22T16:28:57Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Distributing entanglement with separable states: assessment of encoding
and decoding imperfections [55.41644538483948]
Entanglement can be distributed using a carrier which is always separable from the rest of the systems involved.
We consider the effect of incoherent dynamics acting alongside imperfect unitary interactions.
We show that entanglement gain is possible even with substantial unitary errors.
arXiv Detail & Related papers (2020-02-11T15:25:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.