Exactly solvable many-body dynamics from space-time duality
- URL: http://arxiv.org/abs/2505.11489v1
- Date: Fri, 16 May 2025 17:52:54 GMT
- Title: Exactly solvable many-body dynamics from space-time duality
- Authors: Bruno Bertini, Pieter W. Claeys, Tomaž Prosen,
- Abstract summary: Recent years have seen significant advances, both theoretical and experimental, in our understanding of quantum many-body dynamics.<n>Here we review dual-unitary circuits as a particular setting leading to exact results in quantum many-body dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have seen significant advances, both theoretical and experimental, in our understanding of quantum many-body dynamics. Given this problem's high complexity, it is surprising that a substantial amount of this progress can be ascribed to exact analytical results. Here we review dual-unitary circuits as a particular setting leading to exact results in quantum many-body dynamics. Dual-unitary circuits constitute minimal models in which space and time are treated on an equal footings, yielding exactly solvable yet possibly chaotic evolution. They were the first in which current notions of quantum chaos could be analytically quantified, allow for a full characterisation of the dynamics of thermalisation, scrambling, and entanglement (among others), and can be experimentally realised in current quantum simulators. Dual-unitarity is a specific fruitful implementation of the more general idea of space-time duality in which the roles of space and time are exchanged to access relevant dynamical properties of quantum many-body systems.
Related papers
- Constructive interference at the edge of quantum ergodic dynamics [116.94795372054381]
We characterize ergodic dynamics using the second-order out-of-time-order correlators, OTOC$(2)$.<n>In contrast to dynamics without time reversal, OTOC$(2)$ are observed to remain sensitive to the underlying dynamics at long time scales.
arXiv Detail & Related papers (2025-06-11T21:29:23Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Random Quantum Circuits [0.0]
Quantum circuits are a new playground for quantum many-body physics.
These models shed light on longstanding questions about thermalization and chaos.
Quantum circuit dynamics is also topical in view of experimental progress in building digital quantum simulators.
arXiv Detail & Related papers (2022-07-28T17:57:36Z) - Saturation and recurrence of quantum complexity in random local quantum
dynamics [5.803309695504831]
Quantum complexity is a measure of the minimal number of elementary operations required to prepare a given state or unitary channel.
Brown and Susskind conjectured that the complexity of a chaotic quantum system grows linearly in time up to times exponential in the system size, saturating at a maximal value, and remaining maximally complex until undergoing recurrences at doubly-exponential times.
arXiv Detail & Related papers (2022-05-19T17:42:31Z) - Dynamics in an exact solvable quantum magnet: benchmark for quantum
computer [2.643309520855375]
We explore the dynamic behavior of 2D large-scale ferromagnetic J1-J2 Heisenberg model both theoretically and experimentally.
A quantum walk experiment is designed and conducted on the basis of IBM programmable quantum processors.
arXiv Detail & Related papers (2021-09-23T13:32:45Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.