論文の概要: Robust Trajectory Prediction against Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2208.00094v1
- Date: Fri, 29 Jul 2022 22:35:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-02 12:49:49.821365
- Title: Robust Trajectory Prediction against Adversarial Attacks
- Title(参考訳): 対向攻撃に対するロバスト軌道予測
- Authors: Yulong Cao, Danfei Xu, Xinshuo Weng, Zhuoqing Mao, Anima Anandkumar,
Chaowei Xiao, Marco Pavone
- Abstract要約: ディープニューラルネットワーク(DNN)を用いた軌道予測は、自律運転システムにおいて不可欠な要素である。
これらの手法は敵の攻撃に対して脆弱であり、衝突などの重大な結果をもたらす。
本研究では,敵対的攻撃に対する軌道予測モデルを保護するための2つの重要な要素を同定する。
- 参考スコア(独自算出の注目度): 84.10405251683713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction using deep neural networks (DNNs) is an essential
component of autonomous driving (AD) systems. However, these methods are
vulnerable to adversarial attacks, leading to serious consequences such as
collisions. In this work, we identify two key ingredients to defend trajectory
prediction models against adversarial attacks including (1) designing effective
adversarial training methods and (2) adding domain-specific data augmentation
to mitigate the performance degradation on clean data. We demonstrate that our
method is able to improve the performance by 46% on adversarial data and at the
cost of only 3% performance degradation on clean data, compared to the model
trained with clean data. Additionally, compared to existing robust methods, our
method can improve performance by 21% on adversarial examples and 9% on clean
data. Our robust model is evaluated with a planner to study its downstream
impacts. We demonstrate that our model can significantly reduce the severe
accident rates (e.g., collisions and off-road driving).
- Abstract(参考訳): ディープニューラルネットワーク(DNN)を用いた軌道予測は、自律運転(AD)システムの重要な構成要素である。
しかし、これらの手法は敵の攻撃に対して脆弱であり、衝突などの重大な結果をもたらす。
本研究は,(1)効果的な対向訓練法の設計,(2)クリーンデータの性能低下を軽減するためにドメイン固有のデータ拡張を追加すること,など,対向攻撃に対する軌道予測モデルを守るための2つの重要な要素を同定する。
本手法は, クリーンデータを用いてトレーニングしたモデルと比較して, 敵データでは46%, クリーンデータでは3%の性能劣化がみられ, 性能が向上することが実証された。
さらに, 従来のロバスト手法と比較して, 逆例では21%, クリーンデータでは9%の性能向上が可能である。
我々のロバストモデルは、その下流への影響を研究するプランナーによって評価される。
我々のモデルが重大な事故率(衝突やオフロード運転など)を大幅に削減できることを実証する。
関連論文リスト
- Adversarial Fine-tuning of Compressed Neural Networks for Joint Improvement of Robustness and Efficiency [3.3490724063380215]
アドリラルトレーニングは、より堅牢なモデルをもたらすことができる緩和戦略として提示されている。
本稿では,2つの異なるモデル圧縮手法(構造的重み打ち法と量子化法)が対向ロバスト性に及ぼす影響について検討する。
本研究では, 圧縮モデルの逆方向微調整により, 対向訓練モデルに匹敵する強靭性性能が得られることを示す。
論文 参考訳(メタデータ) (2024-03-14T14:34:25Z) - Enhancing Adversarial Robustness via Score-Based Optimization [22.87882885963586]
敵対的攻撃は、わずかな摂動を導入することによって、ディープニューラルネットワーク分類器を誤認する可能性がある。
ScoreOptと呼ばれる新しい対向防御方式を導入し、テスト時に対向サンプルを最適化する。
実験の結果,本手法は性能とロバスト性の両方において,既存の敵防御よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-10T03:59:42Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - DODEM: DOuble DEfense Mechanism Against Adversarial Attacks Towards
Secure Industrial Internet of Things Analytics [8.697883716452385]
I-IoT環境における敵攻撃の検出と軽減のための二重防御機構を提案する。
まず、新規性検出アルゴリズムを用いて、サンプルに対して逆攻撃があるかどうかを検知する。
攻撃があった場合、敵の再訓練はより堅牢なモデルを提供する一方、通常のサンプルに対して標準的な訓練を適用する。
論文 参考訳(メタデータ) (2023-01-23T22:10:40Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - Efficient Adversarial Training With Data Pruning [26.842714298874192]
我々は,データプルーニングが,対人訓練の収束と信頼性の向上につながることを示す。
一部の設定では、データのプルーニングは両方の世界の利点をもたらします。
論文 参考訳(メタデータ) (2022-07-01T23:54:46Z) - Improving White-box Robustness of Pre-processing Defenses via Joint Adversarial Training [106.34722726264522]
対向騒音の干渉を軽減するため,様々な対向防御技術が提案されている。
プレプロセス法は、ロバストネス劣化効果に悩まされることがある。
この負の効果の潜在的な原因は、敵の訓練例が静的であり、前処理モデルとは独立していることである。
本稿では,JATP(Joint Adversarial Training Based Pre-processing)防衛法を提案する。
論文 参考訳(メタデータ) (2021-06-10T01:45:32Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - SAD: Saliency-based Defenses Against Adversarial Examples [0.9786690381850356]
逆例 ドリフトモデル予測は ネットワークの本来の意図から 離れている
本研究では, 対人攻撃の影響を受けやすいクリーニングデータに対する視覚的サリエンシに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-03-10T15:55:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。