Quantum Speed Limit under Brachistochrone Evolution
- URL: http://arxiv.org/abs/2208.00230v2
- Date: Mon, 7 Aug 2023 09:19:34 GMT
- Title: Quantum Speed Limit under Brachistochrone Evolution
- Authors: Fu-Quan Dou, Min-Peng Han, and Chuan-Cun Shu
- Abstract summary: We propose a geometrical approach to derive a quantum speed limit (QSL) bound for closed and open quantum systems.
We show that the QSL between a given initial state to a final state is determined not only by the entire dynamics of the system but also by the individual dynamics of a critical parameter.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: According to the Heisenberg uncertainty principle between time and energy
fluctuation, a concept of the quantum speed limit (QSL) has been established to
determine the minimum evolutionary time between quantum states. Considerable
theoretical and experimental efforts are invested in obtaining the QSL time
bounds in various scenarios. However, it remains a long-standing goal to derive
a meaningful QSL bound for a general quantum problem. Here, we propose a
geometrical approach to derive a QSL bound for closed and open quantum systems.
By solving a quantum brachistochrone problem in the framework of the Riemannian
metric, we show that the QSL between a given initial state to a final state is
determined not only by the entire dynamics of the system but also by the
individual dynamics of a critical parameter. We exemplify the utility of the
new bound in three representative scenarios, demonstrating a pronounced
advantage in finding a tight and meaningful QSL bound of a general quantum
evolution problem.
Related papers
- Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.
We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.
We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Intrinsic Quantum Mpemba Effect in Markovian Systems and Quantum Circuits [9.979018524312751]
The quantum Mpemba effect (QME) describes the counterintuitive phenomenon in which a system farther from equilibrium reaches steady state faster than one closer to equilibrium.
Here we propose the intrinsic quantum Mpemba effect (IQME), defined using the trajectory length traced by the quantum state as a more appropriate measure of distance.
This work deepens our understanding of quantum state evolution and lays the foundation for accurately capturing novel quantum dynamical behaviour.
arXiv Detail & Related papers (2024-11-27T15:00:59Z) - Experimental Investigation of Geometric Quantum Speed Limits in an Open Quantum System [0.0]
We studied geometric quantum speed limits (QSL) of a qubit subject to decoherence in an ensemble of chloroform molecules.
We used two distinguishability measures of quantum states to assess the speed of the qubit evolution.
arXiv Detail & Related papers (2023-07-13T04:55:00Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Generalised quantum speed limit for arbitrary time-continuous evolution [0.0]
We derive a generalised quantum speed limit (GQSL) for arbitrary time-continuous evolution using the geometrical approach of quantum mechanics.
The GQSL is applicable for quantum systems undergoing unitary, non-unitary, completely positive, non-completely positive and relativistic quantum dynamics.
arXiv Detail & Related papers (2022-07-08T21:00:11Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - Diverging quantum speed limits: a herald of classicality [0.0]
We show that vanishing quantum speed limit (QSL) times can be traced back to reduced uncertainty in quantum observables.
We show that the classicality that emerges due to incoherent mixing of states from the addition of classical noise typically increases the QSL time.
arXiv Detail & Related papers (2021-07-13T18:25:28Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Analysis of lower bounds for quantum control times and their relation to
the quantum speed limit [0.0]
Limitations to the speed of evolution of quantum systems, typically referred to as quantum speed limits (QSLs), have important consequences for quantum control problems.
In this paper we present a short introductory overview of quantum speed limit for unitary dynamics and its connection to quantum control.
arXiv Detail & Related papers (2020-02-25T19:19:29Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.