FTBC: Forward Temporal Bias Correction for Optimizing ANN-SNN Conversion
- URL: http://arxiv.org/abs/2403.18388v1
- Date: Wed, 27 Mar 2024 09:25:20 GMT
- Title: FTBC: Forward Temporal Bias Correction for Optimizing ANN-SNN Conversion
- Authors: Xiaofeng Wu, Velibor Bojkovic, Bin Gu, Kun Suo, Kai Zou,
- Abstract summary: Spiking Neural Networks (SNNs) offer a promising avenue for energy-efficient computing compared with Artificial Neural Networks (ANNs)
In this work, we introduce a lightweight Forward Temporal Bias (FTBC) technique, aimed at enhancing conversion accuracy without the computational overhead.
We further propose an algorithm for finding the temporal bias only in the forward pass, thus eliminating the computational burden of backpropagation.
- Score: 16.9748086865693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) offer a promising avenue for energy-efficient computing compared with Artificial Neural Networks (ANNs), closely mirroring biological neural processes. However, this potential comes with inherent challenges in directly training SNNs through spatio-temporal backpropagation -- stemming from the temporal dynamics of spiking neurons and their discrete signal processing -- which necessitates alternative ways of training, most notably through ANN-SNN conversion. In this work, we introduce a lightweight Forward Temporal Bias Correction (FTBC) technique, aimed at enhancing conversion accuracy without the computational overhead. We ground our method on provided theoretical findings that through proper temporal bias calibration the expected error of ANN-SNN conversion can be reduced to be zero after each time step. We further propose a heuristic algorithm for finding the temporal bias only in the forward pass, thus eliminating the computational burden of backpropagation and we evaluate our method on CIFAR-10/100 and ImageNet datasets, achieving a notable increase in accuracy on all datasets. Codes are released at a GitHub repository.
Related papers
- When Bio-Inspired Computing meets Deep Learning: Low-Latency, Accurate,
& Energy-Efficient Spiking Neural Networks from Artificial Neural Networks [22.721987637571306]
Spiking Neural Networks (SNNs) are demonstrating comparable accuracy to convolutional neural networks (CNN)
ANN-to-SNN conversion has recently gained significant traction in developing deep SNNs with close to state-of-the-art (SOTA) test accuracy on complex image recognition tasks.
We propose a novel ANN-to-SNN conversion framework, that incurs an exponentially lower number of time steps compared to that required in the SOTA conversion approaches.
arXiv Detail & Related papers (2023-12-12T00:10:45Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - Bridging the Gap between ANNs and SNNs by Calibrating Offset Spikes [19.85338979292052]
Spiking Neural Networks (SNNs) have attracted great attention due to their distinctive characteristics of low power consumption and temporal information processing.
ANN-SNN conversion, as the most commonly used training method for applying SNNs, can ensure that converted SNNs achieve comparable performance to ANNs on large-scale datasets.
In this paper, instead of evaluating different conversion errors and then eliminating these errors, we define an offset spike to measure the degree of deviation between actual and desired SNN firing rates.
arXiv Detail & Related papers (2023-02-21T14:10:56Z) - Ultra-low Latency Adaptive Local Binary Spiking Neural Network with
Accuracy Loss Estimator [4.554628904670269]
We propose an ultra-low latency adaptive local binary spiking neural network (ALBSNN) with accuracy loss estimators.
Experimental results show that this method can reduce storage space by more than 20 % without losing network accuracy.
arXiv Detail & Related papers (2022-07-31T09:03:57Z) - Optimized Potential Initialization for Low-latency Spiking Neural
Networks [21.688402090967497]
Spiking Neural Networks (SNNs) have been attached great importance due to the distinctive properties of low power consumption, biological plausibility, and adversarial robustness.
The most effective way to train deep SNNs is through ANN-to-SNN conversion, which have yielded the best performance in deep network structure and large-scale datasets.
In this paper, we aim to achieve high-performance converted SNNs with extremely low latency (fewer than 32 time-steps)
arXiv Detail & Related papers (2022-02-03T07:15:43Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
We design a spatial-temporal-fusion BNN for efficiently scaling BNNs to large models.
Compared to vanilla BNNs, our approach can greatly reduce the training time and the number of parameters, which contributes to scale BNNs efficiently.
arXiv Detail & Related papers (2021-12-12T17:13:14Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
Spiking neural networks (SNNs) are biology-inspired artificial neural networks (ANNs)
We propose a novel strategic pipeline that transfers the weights to the target SNN by combining threshold balance and soft-reset mechanisms.
Our method is promising to get implanted onto embedded platforms with better support of SNNs with limited energy and memory.
arXiv Detail & Related papers (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.