論文の概要: Vector-Based Data Improves Left-Right Eye-Tracking Classifier
Performance After a Covariate Distributional Shift
- arxiv url: http://arxiv.org/abs/2208.00465v1
- Date: Sun, 31 Jul 2022 16:27:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-02 14:52:46.896682
- Title: Vector-Based Data Improves Left-Right Eye-Tracking Classifier
Performance After a Covariate Distributional Shift
- Title(参考訳): ベクトルベースデータによる共変量分布シフト後の左目追跡分類器の性能向上
- Authors: Brian Xiang, Abdelrahman Abdelmonsef
- Abstract要約: 我々は、より堅牢なベンチマークを作成するために、EEG-ETデータ収集のための微粒なデータアプローチを提案する。
我々は、粗粒データと細粒データの両方を利用して機械学習モデルを訓練し、類似/異なる分布パターンのデータでテストした場合の精度を比較した。
その結果、細粒度ベクトルベースでトレーニングされたモデルは、粗粒度二分分類されたデータでトレーニングされたモデルよりも分布シフトの影響を受けにくいことがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The main challenges of using electroencephalogram (EEG) signals to make
eye-tracking (ET) predictions are the differences in distributional patterns
between benchmark data and real-world data and the noise resulting from the
unintended interference of brain signals from multiple sources. Increasing the
robustness of machine learning models in predicting eye-tracking position from
EEG data is therefore integral for both research and consumer use. In medical
research, the usage of more complicated data collection methods to test for
simpler tasks has been explored to address this very issue. In this study, we
propose a fine-grain data approach for EEG-ET data collection in order to
create more robust benchmarking. We train machine learning models utilizing
both coarse-grain and fine-grain data and compare their accuracies when tested
on data of similar/different distributional patterns in order to determine how
susceptible EEG-ET benchmarks are to differences in distributional data. We
apply a covariate distributional shift to test for this susceptibility. Results
showed that models trained on fine-grain, vector-based data were less
susceptible to distributional shifts than models trained on coarse-grain,
binary-classified data.
- Abstract(参考訳): 脳波(EEG)信号を用いて視線追跡(ET)予測を行う主な課題は、ベンチマークデータと実世界のデータの分布パターンの違いと、意図しない複数の音源からの脳信号の干渉に起因するノイズである。
したがって、脳波データから視線追跡位置を予測する機械学習モデルの堅牢性を高めることは、研究と消費者の両方にとって不可欠である。
医療研究において、より単純なタスクをテストするためのより複雑なデータ収集手法の使用が、この問題に対処するために研究されている。
本研究では、より堅牢なベンチマークを作成するために、EEG-ETデータ収集のための微粒データアプローチを提案する。
粗粒データと微粒データの両方を用いた機械学習モデルを訓練し,類似/異種分布パターンのデータを用いた場合の精度比較を行い,分布データの違いに対する脳波ベンチマークの感受性について検討した。
この感受性のテストには共変量分布シフトを適用する。
その結果、細粒度ベクトルベースでトレーニングされたモデルは、粗粒度二分分類データでトレーニングされたモデルよりも分布シフトの影響を受けにくいことがわかった。
関連論文リスト
- Can EEG resting state data benefit data-driven approaches for motor-imagery decoding? [4.870701423888026]
本稿では,デコードモデルの一般化を促進するための特徴結合手法を提案する。
我々は、EEG信号分類のための標準的な畳み込みニューラルネットワークであるEEGNetモデルと、静止状態のEEGデータから導かれる機能的接続手段を組み合わせる。
ユーザ内のシナリオに対する平均精度の改善が観察されているが、ランダムなデータ結合と比較して、ユーザ間のシナリオ間の結合はメリットがない。
論文 参考訳(メタデータ) (2024-10-28T07:18:32Z) - Measuring and Improving Attentiveness to Partial Inputs with Counterfactuals [91.59906995214209]
我々は,新しい評価手法であるCAT(Facterfactual Attentiveness Test)を提案する。
CATは、入力の一部を別の例から別の例に置き換えることで、予測を変更する注意深いモデルを期待することで、反事実を使用する。
実験データの精度が向上する一方, GPT3 は実演回数の増加により注意力の低下がみられた。
論文 参考訳(メタデータ) (2023-11-16T06:27:35Z) - Machine Learning Based Missing Values Imputation in Categorical Datasets [2.5611256859404983]
この研究では、分類データセットのギャップを埋めるための機械学習アルゴリズムの使用について検討した。
Error Correction Output Codesフレームワークを使用して構築されたアンサンブルモデルに重点が置かれた。
大量のラベル付きデータの要求を含む、これらの奨励的な結果にもかかわらず、データ計算の欠如に対する深い学習には障害がある。
論文 参考訳(メタデータ) (2023-06-10T03:29:48Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - SynBench: Task-Agnostic Benchmarking of Pretrained Representations using
Synthetic Data [78.21197488065177]
近年、下流のタスクで大規模なデータで事前訓練された微調整大型モデルが成功し、ディープラーニングにおける重要なパラダイムシフトにつながった。
本稿では,合成データを用いて事前学習した表現の質を測定するためのタスク非依存フレームワークであるtextitSynBenchを提案する。
論文 参考訳(メタデータ) (2022-10-06T15:25:00Z) - Too Fine or Too Coarse? The Goldilocks Composition of Data Complexity
for Robust Left-Right Eye-Tracking Classifiers [0.0]
我々は、細粒度データと粗粒度データの両方からなる混合データセットを用いて機械学習モデルを訓練する。
我々の目的のために、細粒度データはより複雑な方法で収集されたデータを指すのに対し、粗粒度データはより単純な方法で収集されたデータを指す。
論文 参考訳(メタデータ) (2022-08-24T23:18:08Z) - Improving the efficacy of Deep Learning models for Heart Beat detection
on heterogeneous datasets [0.0]
ヘテロジニアスデータセットにディープラーニングモデルを適用する際の問題点について検討する。
本研究では,健常者からのデータに基づいてトレーニングしたモデルの性能が,心疾患患者に適用した場合に低下することを示す。
次に、異なるデータセットにモデルを適応させるためのTransfer Learningの使用を評価します。
論文 参考訳(メタデータ) (2021-10-26T14:26:55Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Medical data wrangling with sequential variational autoencoders [5.9207487081080705]
本稿では,逐次変分オートエンコーダ(vaes)を用いた異種データ型とバースト欠落データを用いた医療データ記録のモデル化を提案する。
GP-VAEモデルより計算複雑性が低く,両指標を用いた場合,Shi-VAEが最高の性能を発揮することを示す。
論文 参考訳(メタデータ) (2021-03-12T10:59:26Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。