論文の概要: Online Decentralized Frank-Wolfe: From theoretical bound to applications
in smart-building
- arxiv url: http://arxiv.org/abs/2208.00522v1
- Date: Sun, 31 Jul 2022 21:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-02 14:57:45.161040
- Title: Online Decentralized Frank-Wolfe: From theoretical bound to applications
in smart-building
- Title(参考訳): オンライン分散Frank-Wolfe:理論的境界からスマートビルディングへの応用へ
- Authors: Angan Mitra, Nguyen Kim Thang, Tuan-Anh Nguyen, Denis Trystram, Paul
Youssef
- Abstract要約: 分散学習アルゴリズムは、データの分散化が限られたローカル計算の参加者にとって、急速に成長する世界で重要である。
個人データ/モデル集約損失関数を削減するオンラインアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 8.8896707993459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The design of decentralized learning algorithms is important in the
fast-growing world in which data are distributed over participants with limited
local computation resources and communication. In this direction, we propose an
online algorithm minimizing non-convex loss functions aggregated from
individual data/models distributed over a network. We provide the theoretical
performance guarantee of our algorithm and demonstrate its utility on a real
life smart building.
- Abstract(参考訳): 分散学習アルゴリズムの設計は、限られたローカル計算資源とコミュニケーションを持つ参加者にデータを分散する急速に成長する世界で重要である。
本稿では,ネットワーク上に分散した個々のデータ/モデルから集約された非凸損失関数を最小化するオンラインアルゴリズムを提案する。
我々は,アルゴリズムの理論的性能保証を提供し,その実用性を実生活のスマートな建物で実証する。
関連論文リスト
- RESIST: Resilient Decentralized Learning Using Consensus Gradient Descent [11.22833419439317]
経験的堅牢性リスク(ERM)は、現代の機械学習(ML)の基盤である
本稿では,MITM(man-in-the-middle)攻撃に焦点をあてる。
本稿では,敵に妥協された通信リンクに対して堅牢なアルゴリズムであるRESISTを提案する。
論文 参考訳(メタデータ) (2025-02-11T21:48:10Z) - From promise to practice: realizing high-performance decentralized training [8.955918346078935]
ディープニューラルネットワークの分散トレーニングは、All-Reduceのような同期データ並列メソッドよりも理論的に優れたスケーラビリティのために大きな注目を集めている。
本稿では、All-Reduceトレーニングのスピードアップにつながる3つの重要な要因を特定し、いつ、どのように、どの程度の分散化によって、より短い実行時間が得られるかを決定するランタイムモデルを構築する。
論文 参考訳(メタデータ) (2024-10-15T19:04:56Z) - Robust Decentralized Learning with Local Updates and Gradient Tracking [16.46727164965154]
分散学習をクライアントやノードのネットワークとみなす。
本稿では,局所的な更新と勾配追跡という2つの重要なデータを利用する分散化ミニマックス最適化手法を提案する。
論文 参考訳(メタデータ) (2024-05-02T03:03:34Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
論文 参考訳(メタデータ) (2024-04-04T06:24:11Z) - Communication-Efficient Distributionally Robust Decentralized Learning [23.612400109629544]
分散学習アルゴリズムは、相互接続されたエッジデバイスにデータと計算資源を共有する権限を与える。
そこで本研究では,単一分散ループ降下/上昇アルゴリズム(ADGDA)を提案し,その基礎となるミニマックス最適化問題を解く。
論文 参考訳(メタデータ) (2022-05-31T09:00:37Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
本研究では,分散ネットワーク構造を持つローカルデータセットの局所的(あるいはパーソナライズされた)モデルを学習するための最適化手法について検討する。
我々の主要な概念的貢献は、総変動最小化(GTV)としてフェデレーション学習を定式化することである。
私たちのアルゴリズムの主な貢献は、完全に分散化されたフェデレーション学習アルゴリズムです。
論文 参考訳(メタデータ) (2021-05-26T18:07:19Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z) - A Low Complexity Decentralized Neural Net with Centralized Equivalence
using Layer-wise Learning [49.15799302636519]
我々は、分散処理ノード(労働者)で最近提案された大規模ニューラルネットワークをトレーニングするために、低複雑性分散学習アルゴリズムを設計する。
我々の設定では、トレーニングデータは作業者間で分散されるが、プライバシやセキュリティ上の懸念からトレーニングプロセスでは共有されない。
本研究では,データが一箇所で利用可能であるかのように,等価な学習性能が得られることを示す。
論文 参考訳(メタデータ) (2020-09-29T13:08:12Z) - Quantized Decentralized Stochastic Learning over Directed Graphs [54.005946490293496]
有向グラフ上で通信する計算ノード間でデータポイントが分散される分散学習問題を考える。
モデルのサイズが大きくなるにつれて、分散学習は、各ノードが隣人にメッセージ(モデル更新)を送信することによる通信負荷の大きなボトルネックに直面します。
本稿では,分散コンセンサス最適化におけるプッシュサムアルゴリズムに基づく有向グラフ上の量子化分散学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-23T18:25:39Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。