論文の概要: An Enhanced Deep Learning Technique for Prostate Cancer Identification
Based on MRI Scans
- arxiv url: http://arxiv.org/abs/2208.00583v1
- Date: Mon, 1 Aug 2022 03:16:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-02 14:33:58.571307
- Title: An Enhanced Deep Learning Technique for Prostate Cancer Identification
Based on MRI Scans
- Title(参考訳): MRIを用いた前立腺癌同定のための高度なディープラーニング技術
- Authors: Hussein Hashem, Yasmin Alsakar, Ahmed Elgarayhi, Mohammed Elmogy,
Mohammed Sallah
- Abstract要約: この目的に使用されるインセプションResNetV2ディープラーニングモデルの平均精度は89.20%である。
提案手法の実験結果は,他の手法と比較して,有望かつ効果的な結果を示すものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prostate cancer is the most dangerous cancer diagnosed in men worldwide.
Prostate diagnosis has been affected by many factors, such as lesion
complexity, observer visibility, and variability. Many techniques based on
Magnetic Resonance Imaging (MRI) have been used for prostate cancer
identification and classification in the last few decades. Developing these
techniques is crucial and has a great medical effect because they improve the
treatment benefits and the chance of patients' survival. A new technique that
depends on MRI has been proposed to improve the diagnosis. This technique
consists of two stages. First, the MRI images have been preprocessed to make
the medical image more suitable for the detection step. Second, prostate cancer
identification has been performed based on a pre-trained deep learning model,
InceptionResNetV2, that has many advantages and achieves effective results. In
this paper, the InceptionResNetV2 deep learning model used for this purpose has
average accuracy equals to 89.20%, and the area under the curve (AUC) equals to
93.6%. The experimental results of this proposed new deep learning technique
represent promising and effective results compared to other previous
techniques.
- Abstract(参考訳): 前立腺がんは世界でも最も危険ながんである。
前立腺診断は、病変の複雑さ、観察者視認性、変動性など多くの要因に影響されている。
磁気共鳴イメージング(MRI)に基づく多くの技術が過去数十年間、前立腺がんの同定と分類に使われてきた。
これらの技術の開発は不可欠であり、治療効果と患者が生存する可能性を改善するため、医療効果が高い。
診断を改善するためにMRIに依存する新しい手法が提案されている。
この技法は2つの段階からなる。
まず、MRI画像が前処理され、医用画像が検出ステップに適合するようにした。
第二に、前立腺がんの同定は、事前訓練されたディープラーニングモデルであるInceptionResNetV2に基づいて行われ、多くの利点があり、効果的な結果が得られる。
本稿では,この目的に用いたインセプションresnetv2深層学習モデルは,平均精度が89.20%,曲線下(auc)が93.6%であることを示す。
提案手法の実験結果は,他の手法と比較して有望かつ効果的な結果を示すものである。
関連論文リスト
- Enhancing Trust in Clinically Significant Prostate Cancer Prediction with Multiple Magnetic Resonance Imaging Modalities [61.36288157482697]
米国では、前立腺がんが男性の死因としては2番目に多く、2024年には35,250人が死亡している。
本稿では,複数のMRIモダリティを組み合わせて深層学習モデルを訓練し,臨床的に有意な前立腺癌予測のためのモデルの信頼性を高めることを検討する。
論文 参考訳(メタデータ) (2024-11-07T12:48:27Z) - Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
転送学習は、よりリッチなデータを持つドメインから取得した機能を活用して、限られたデータを持つドメインのパフォーマンスを向上させるテクニックである。
本稿では,T2強調画像における乳癌からの転移学習による臨床的に有意な前立腺癌予知の改善について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
深層学習モデルを用いた乳癌に対する臨床支援の強化について検討した。
我々は、体積畳み込みニューラルネットワークを利用して、前処理コホートから深い放射能特徴を学習する。
提案手法は, グレードと処理後応答予測の両方において, より良い性能を実現することができる。
論文 参考訳(メタデータ) (2022-11-10T03:02:12Z) - Breast Cancer Classification Based on Histopathological Images Using a
Deep Learning Capsule Network [0.0]
本研究は, 病理組織像(HIs)を用いて, 異なる種類の乳癌を分類することを目的とする。
本稿では、Res2Netブロックと4つの畳み込み層を用いて、マルチスケールの特徴を抽出する拡張カプセルネットワークを提案する。
結果として、新しいメソッドは、可能な限り最高の機能を自動で学習するため、古いメソッドよりも優れています。
論文 参考訳(メタデータ) (2022-08-01T03:45:36Z) - Brain Cancer Survival Prediction on Treatment-na ive MRI using Deep
Anchor Attention Learning with Vision Transformer [4.630654643366308]
画像ベース脳腫瘍予測モデルによるMRIによるX線学的表現型の定量化
腫瘍内表現型不均一性の証拠にもかかわらず、MRIスキャンにおける異なるスライス間の空間的多様性は、そのような方法では比較的研究されていない。
本稿では,脳腫瘍患者の生存リスクを予測するために,ビジョントランスフォーマを用いたディープアンカーアテンションアグリゲーション戦略を提案する。
論文 参考訳(メタデータ) (2022-02-03T21:33:08Z) - Implementation of Convolutional Neural Network Architecture on 3D
Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis [0.0]
磁気共鳴画像における前立腺病変の自動分類のための新しいディープラーニング手法を提案する。
提案手法は受信器動作特性曲線値0.87の領域で分類性能を達成した。
提案フレームワークは前立腺癌における医用画像の解釈を補助し,不必要な生検を減らす可能性を反映している。
論文 参考訳(メタデータ) (2021-12-29T16:47:52Z) - CorrSigNet: Learning CORRelated Prostate Cancer SIGnatures from
Radiology and Pathology Images for Improved Computer Aided Diagnosis [1.63324350193061]
我々はMRIで前立腺癌を局所化する2段階自動モデルであるCorrSigNetを提案する。
まず,病理組織学的特徴と相関するがんのMRI所見を学習する。
第二に、このモデルは、学習した相関MRI機能を使用して、前立腺がんの局所化のために畳み込みニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2020-07-31T23:44:25Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。