An Evidential Neural Network Model for Regression Based on Random Fuzzy
Numbers
- URL: http://arxiv.org/abs/2208.00647v1
- Date: Mon, 1 Aug 2022 07:13:31 GMT
- Title: An Evidential Neural Network Model for Regression Based on Random Fuzzy
Numbers
- Authors: Thierry Denoeux
- Abstract summary: We introduce a distance-based neural network model for regression.
The model interprets the intersection of the input vector to prototypes as pieces of evidence.
Experiments with real datasets demonstrate the very good performance of the method.
- Score: 6.713564212269253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a distance-based neural network model for regression, in which
prediction uncertainty is quantified by a belief function on the real line. The
model interprets the distances of the input vector to prototypes as pieces of
evidence represented by Gaussian random fuzzy numbers (GRFN's) and combined by
the generalized product intersection rule, an operator that extends Dempster's
rule to random fuzzy sets. The network output is a GRFN that can be summarized
by three numbers characterizing the most plausible predicted value, variability
around this value, and epistemic uncertainty. Experiments with real datasets
demonstrate the very good performance of the method as compared to
state-of-the-art evidential and statistical learning algorithms.
\keywords{Evidence theory, Dempster-Shafer theory, belief functions, machine
learning, random fuzzy sets.
Related papers
- A Non-negative VAE:the Generalized Gamma Belief Network [49.970917207211556]
The gamma belief network (GBN) has demonstrated its potential for uncovering multi-layer interpretable latent representations in text data.
We introduce the generalized gamma belief network (Generalized GBN) in this paper, which extends the original linear generative model to a more expressive non-linear generative model.
We also propose an upward-downward Weibull inference network to approximate the posterior distribution of the latent variables.
arXiv Detail & Related papers (2024-08-06T18:18:37Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Diffusion Random Feature Model [0.0]
We present a diffusion model-inspired deep random feature model that is interpretable.
We derive generalization bounds between the distribution of sampled data and the true distribution using properties of score matching.
We validate our findings by generating samples on the fashion MNIST dataset and instrumental audio data.
arXiv Detail & Related papers (2023-10-06T17:59:05Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
We show that precious information is contained in the spectrum of the precision matrix that can be extracted once the training of the model is completed.
We conducted numerical experiments for regression, classification, and feature selection tasks.
Our results demonstrate that the proposed model does not only yield an attractive prediction performance compared to the competitors.
arXiv Detail & Related papers (2023-07-11T09:54:30Z) - Stochastic Deep Networks with Linear Competing Units for Model-Agnostic
Meta-Learning [4.97235247328373]
This work addresses meta-learning (ML) by considering deep networks with local winner-takes-all (LWTA) activations.
This type of network units results in sparse representations from each model layer, as the units are organized into blocks where only one unit generates a non-zero output.
Our approach produces state-of-the-art predictive accuracy on few-shot image classification and regression experiments, as well as reduced predictive error on an active learning setting.
arXiv Detail & Related papers (2022-08-02T16:19:54Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Predicting Unreliable Predictions by Shattering a Neural Network [145.3823991041987]
Piecewise linear neural networks can be split into subfunctions.
Subfunctions have their own activation pattern, domain, and empirical error.
Empirical error for the full network can be written as an expectation over subfunctions.
arXiv Detail & Related papers (2021-06-15T18:34:41Z) - Probabilistic Numeric Convolutional Neural Networks [80.42120128330411]
Continuous input signals like images and time series that are irregularly sampled or have missing values are challenging for existing deep learning methods.
We propose Probabilistic Convolutional Neural Networks which represent features as Gaussian processes (GPs)
We then define a convolutional layer as the evolution of a PDE defined on this GP, followed by a nonlinearity.
In experiments we show that our approach yields a $3times$ reduction of error from the previous state of the art on the SuperPixel-MNIST dataset and competitive performance on the medical time2012 dataset PhysioNet.
arXiv Detail & Related papers (2020-10-21T10:08:21Z) - Variational inference formulation for a model-free simulation of a
dynamical system with unknown parameters by a recurrent neural network [8.616180927172548]
We propose a "model-free" simulation of a dynamical system with unknown parameters without prior knowledge.
The deep learning model aims to jointly learn the nonlinear time marching operator and the effects of the unknown parameters from a time series dataset.
It is found that the proposed deep learning model is capable of correctly identifying the dimensions of the random parameters and learning a representation of complex time series data.
arXiv Detail & Related papers (2020-03-02T20:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.