UniToBrain dataset: a Brain Perfusion Dataset
- URL: http://arxiv.org/abs/2208.00650v1
- Date: Mon, 1 Aug 2022 07:16:02 GMT
- Title: UniToBrain dataset: a Brain Perfusion Dataset
- Authors: Daniele Perlo and Enzo Tartaglione and Umberto Gava and Federico
D'Agata and Edwin Benninck and Mauro Bergui
- Abstract summary: We present UniToBrain, the very first open-source dataset for "perfusion maps"
We propose a novel neural networks-based algorithm, using the European library ECVL and EDDL for the image processing and developing deep learning models respectively.
- Score: 2.02258267891574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The CT perfusion (CTP) is a medical exam for measuring the passage of a bolus
of contrast solution through the brain on a pixel-by-pixel basis. The objective
is to draw "perfusion maps" (namely cerebral blood volume, cerebral blood flow
and time to peak) very rapidly for ischemic lesions, and to be able to
distinguish between core and penumubra regions. A precise and quick diagnosis,
in a context of ischemic stroke, can determine the fate of the brain tissues
and guide the intervention and treatment in emergency conditions. In this work
we present UniToBrain dataset, the very first open-source dataset for CTP. It
comprises a cohort of more than a hundred of patients, and it is accompanied by
patients metadata and ground truth maps obtained with state-of-the-art
algorithms. We also propose a novel neural networks-based algorithm, using the
European library ECVL and EDDL for the image processing and developing deep
learning models respectively. The results obtained by the neural network models
match the ground truth and open the road towards potential sub-sampling of the
required number of CT maps, which impose heavy radiation doses to the patients.
Related papers
- Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - PHE-SICH-CT-IDS: A Benchmark CT Image Dataset for Evaluation Semantic
Segmentation, Object Detection and Radiomic Feature Extraction of
Perihematomal Edema in Spontaneous Intracerebral Hemorrhage [2.602118060856794]
Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide.
This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage.
arXiv Detail & Related papers (2023-08-21T07:18:51Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - CT Perfusion is All We Need: 4D CNN Segmentation of Penumbra and Core in
Patients With Suspected Ischemic Stroke [1.6836876499886009]
This paper investigates different methods to utilize the entire 4 convolutionD as input to fully exploit thetemporal information.
Adopting the proposed 4D mJ-Net, a Dice Coefficient of 0.53 and 0.23 is achieved for segmenting penumbra and core areas, respectively.
arXiv Detail & Related papers (2023-03-15T16:53:19Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
We propose a new strategy to train emphslice-level classifiers on CT scans based on the descriptors of the adjacent slices along the axis.
We obtain a single model in the top 4% best-performing solutions of the RSNA Intracranial Hemorrhage dataset challenge.
The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging.
arXiv Detail & Related papers (2022-08-05T23:20:37Z) - Multi-input segmentation of damaged brain in acute ischemic stroke
patients using slow fusion with skip connection [1.372466817835681]
We propose an automatic method to segment the two ischemic regions (core and penumbra) in patients affected by acute ischemic stroke.
Our model is based on a convolution-deconvolution bottleneck structure with multi-input and slow fusion.
The proposed architecture demonstrates effective performance and results comparable to the ground truth annotated by neuroradiologists.
arXiv Detail & Related papers (2022-03-18T16:26:53Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Neural Network-derived perfusion maps: a Model-free approach to computed
tomography perfusion in patients with acute ischemic stroke [4.925222726301579]
Convolutional Neural Network (CNN) can generate clinically relevant parametric maps from CT perfusion data.
Our CNN-based approach generated clinically relevant perfusion maps that are comparable to state-of-the-art perfusion analysis methods.
arXiv Detail & Related papers (2021-01-15T07:11:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.