PHE-SICH-CT-IDS: A Benchmark CT Image Dataset for Evaluation Semantic
Segmentation, Object Detection and Radiomic Feature Extraction of
Perihematomal Edema in Spontaneous Intracerebral Hemorrhage
- URL: http://arxiv.org/abs/2308.10521v1
- Date: Mon, 21 Aug 2023 07:18:51 GMT
- Title: PHE-SICH-CT-IDS: A Benchmark CT Image Dataset for Evaluation Semantic
Segmentation, Object Detection and Radiomic Feature Extraction of
Perihematomal Edema in Spontaneous Intracerebral Hemorrhage
- Authors: Deguo Ma, Chen Li, Lin Qiao, Tianming Du, Dechao Tang, Zhiyu Ma,
Marcin Grzegorzek Hongzan, Hongzan Sun
- Abstract summary: Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide.
This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage.
- Score: 2.602118060856794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intracerebral hemorrhage is one of the diseases with the highest mortality
and poorest prognosis worldwide. Spontaneous intracerebral hemorrhage (SICH)
typically presents acutely, prompt and expedited radiological examination is
crucial for diagnosis, localization, and quantification of the hemorrhage.
Early detection and accurate segmentation of perihematomal edema (PHE) play a
critical role in guiding appropriate clinical intervention and enhancing
patient prognosis. However, the progress and assessment of computer-aided
diagnostic methods for PHE segmentation and detection face challenges due to
the scarcity of publicly accessible brain CT image datasets. This study
establishes a publicly available CT dataset named PHE-SICH-CT-IDS for
perihematomal edema in spontaneous intracerebral hemorrhage. The dataset
comprises 120 brain CT scans and 7,022 CT images, along with corresponding
medical information of the patients. To demonstrate its effectiveness,
classical algorithms for semantic segmentation, object detection, and radiomic
feature extraction are evaluated. The experimental results confirm the
suitability of PHE-SICH-CT-IDS for assessing the performance of segmentation,
detection and radiomic feature extraction methods. To the best of our
knowledge, this is the first publicly available dataset for PHE in SICH,
comprising various data formats suitable for applications across diverse
medical scenarios. We believe that PHE-SICH-CT-IDS will allure researchers to
explore novel algorithms, providing valuable support for clinicians and
patients in the clinical setting. PHE-SICH-CT-IDS is freely published for
non-commercial purpose at:
https://figshare.com/articles/dataset/PHE-SICH-CT-IDS/23957937.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Detecting Underdiagnosed Medical Conditions with Deep Learning-Based Opportunistic CT Imaging [2.0635695607210227]
Opportunistic CT involves repurposing routine CT images to extract diagnostic information.
We analyze 2,674 inpatient CT scans to identify discrepancies between imaging phenotypes and their corresponding documentation.
We find that only 0.5%, 3.2%, and 30.7% of scans diagnosed with sarcopenia, hepatic steatosis, and ascites through either opportunistic imaging or radiology reports were ICD-coded.
arXiv Detail & Related papers (2024-09-18T03:56:56Z) - CPAISD: Core-penumbra acute ischemic stroke dataset [0.0]
CPAISD: Core-Penumbra Acute Ischemic Stroke dataset is aimed at enhancing the early detection and segmentation of ischemic stroke.
The dataset provides a collection of segmented NCCT images.
These include annotations of ischemic core and penumbra regions, critical for developing machine learning models for rapid stroke identification and assessment.
Our dataset's uniqueness lies in its focus on the acute phase of ischemic stroke, with non-informative native CT scans, and includes a baseline model to demonstrate the dataset's application.
arXiv Detail & Related papers (2024-04-03T07:11:19Z) - Exploiting Liver CT scans in Colorectal Carcinoma genomics mutation
classification [0.0]
We propose the first DeepLearning-based exploration, to our knowledge, of such classification approach from the patient medical imaging.
Our method is able to identify CRC RAS mutation family from CT images with 0.73 F1 score.
arXiv Detail & Related papers (2024-01-25T14:40:58Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - APIS: A paired CT-MRI dataset for ischemic stroke segmentation challenge [0.0]
APIS is the first paired public dataset with NCCT and ADC studies of acute ischemic stroke patients.
It was presented as a challenge at the 20th IEEE International Symposium on Biomedical Imaging 2023.
Despite all the teams employing specialized deep learning tools, the results suggest that the ischemic stroke segmentation task from NCCT remains challenging.
arXiv Detail & Related papers (2023-09-26T20:16:07Z) - UniToBrain dataset: a Brain Perfusion Dataset [2.02258267891574]
We present UniToBrain, the very first open-source dataset for "perfusion maps"
We propose a novel neural networks-based algorithm, using the European library ECVL and EDDL for the image processing and developing deep learning models respectively.
arXiv Detail & Related papers (2022-08-01T07:16:02Z) - Exploring and Distilling Posterior and Prior Knowledge for Radiology
Report Generation [55.00308939833555]
The PPKED includes three modules: Posterior Knowledge Explorer (PoKE), Prior Knowledge Explorer (PrKE) and Multi-domain Knowledge Distiller (MKD)
PoKE explores the posterior knowledge, which provides explicit abnormal visual regions to alleviate visual data bias.
PrKE explores the prior knowledge from the prior medical knowledge graph (medical knowledge) and prior radiology reports (working experience) to alleviate textual data bias.
arXiv Detail & Related papers (2021-06-13T11:10:02Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.