Fast-forwarding quantum simulation with real-time quantum Krylov
subspace algorithms
- URL: http://arxiv.org/abs/2208.00948v1
- Date: Mon, 1 Aug 2022 16:00:20 GMT
- Title: Fast-forwarding quantum simulation with real-time quantum Krylov
subspace algorithms
- Authors: Cristian L. Cortes, A. Eugene DePrince, Stephen K. Gray
- Abstract summary: We propose several quantum Krylov fast-forwarding (QKFF) algorithms capable of predicting long-time dynamics well beyond the coherence time of current quantum hardware.
Our algorithms use real-time evolved Krylov basis states prepared on the quantum computer and a multi-reference subspace method to ensure convergence towards high-fidelity, long-time dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum subspace diagonalization (QSD) algorithms have emerged as a
competitive family of algorithms that avoid many of the optimization pitfalls
associated with parameterized quantum circuit algorithms. While the vast
majority of the QSD algorithms have focused on solving the eigenpair problem
for ground, excited-state, and thermal observable estimation, there has been a
lot less work in considering QSD algorithms for the problem of quantum
dynamical simulation. In this work, we propose several quantum Krylov
fast-forwarding (QKFF) algorithms capable of predicting long-time dynamics well
beyond the coherence time of current quantum hardware. Our algorithms use
real-time evolved Krylov basis states prepared on the quantum computer and a
multi-reference subspace method to ensure convergence towards high-fidelity,
long-time dynamics. In particular, we show that the proposed multi-reference
methodology provides a systematic way of trading off circuit depth with
classical post-processing complexity. We also demonstrate the efficacy of our
approach through numerical implementations for several quantum chemistry
problems including the calculation of the auto-correlation and dipole moment
correlation functions
Related papers
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Hybrid quantum gap estimation algorithm using a filtered time series [0.0]
We prove that classical post-processing, i.e., long-time filtering of an offline time series, exponentially improves the circuit depth needed for quantum time evolution.
We apply the filtering method to the construction of a hybrid quantum-classical algorithm to estimate energy gap.
Our findings set the stage for unbiased quantum simulation to offer memory advantage in the near term.
arXiv Detail & Related papers (2022-12-28T18:59:59Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Classical simulation of short-time quantum dynamics [0.0]
We present classical algorithms for approximating the dynamics of local observables and nonlocal quantities.
We establish a novel quantum speed limit, a bound on dynamical phase transitions, and a concentration bound for product states evolved for short times.
arXiv Detail & Related papers (2022-10-20T18:00:04Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Quantum Phase Recognition via Quantum Kernel Methods [6.3286116342955845]
We explore the power of quantum learning algorithms in solving an important class of Quantum Phase Recognition problems.
We numerically benchmark our algorithm for a variety of problems, including recognizing symmetry-protected topological phases and symmetry-broken phases.
Our results highlight the capability of quantum machine learning in predicting such quantum phase transitions in many-particle systems.
arXiv Detail & Related papers (2021-11-15T06:17:52Z) - Quantum Krylov subspace algorithms for ground and excited state energy
estimation [0.0]
Quantum Krylov subspace diagonalization (QKSD) algorithms provide a low-cost alternative to the conventional quantum phase estimation algorithm.
We show that a wide class of Hamiltonians relevant to condensed matter physics and quantum chemistry contain symmetries that can be exploited to avoid the use of the Hadamard test.
We develop a unified theory of quantum Krylov subspace algorithms and present three new quantum-classical algorithms for the ground and excited-state energy estimation problems.
arXiv Detail & Related papers (2021-09-14T17:56:53Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.