A New Probabilistic V-Net Model with Hierarchical Spatial Feature
Transform for Efficient Abdominal Multi-Organ Segmentation
- URL: http://arxiv.org/abs/2208.01382v1
- Date: Tue, 2 Aug 2022 11:51:46 GMT
- Title: A New Probabilistic V-Net Model with Hierarchical Spatial Feature
Transform for Efficient Abdominal Multi-Organ Segmentation
- Authors: Minfeng Xu, Heng Guo, Jianfeng Zhang, Ke Yan, Le Lu
- Abstract summary: We propose a probabilistic multi-organ segmentation network with hierarchical spatial-wise feature modulation to capture flexible organ semantic variants.
The proposed method is trained on the publicly available AbdomenCT-1K dataset and evaluated on two other open datasets.
- Score: 15.26560999964979
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate and robust abdominal multi-organ segmentation from CT imaging of
different modalities is a challenging task due to complex inter- and
intra-organ shape and appearance variations among abdominal organs. In this
paper, we propose a probabilistic multi-organ segmentation network with
hierarchical spatial-wise feature modulation to capture flexible organ semantic
variants and inject the learnt variants into different scales of feature maps
for guiding segmentation. More specifically, we design an input decomposition
module via a conditional variational auto-encoder to learn organ-specific
distributions on the low dimensional latent space and model richer organ
semantic variations that is conditioned on input images.Then by integrating
these learned variations into the V-Net decoder hierarchically via spatial
feature transformation, which has the ability to convert the variations into
conditional Affine transformation parameters for spatial-wise feature maps
modulating and guiding the fine-scale segmentation. The proposed method is
trained on the publicly available AbdomenCT-1K dataset and evaluated on two
other open datasets, i.e., 100 challenging/pathological testing patient cases
from AbdomenCT-1K fully-supervised abdominal organ segmentation benchmark and
90 cases from TCIA+&BTCV dataset. Highly competitive or superior quantitative
segmentation results have been achieved using these datasets for four abdominal
organs of liver, kidney, spleen and pancreas with reported Dice scores improved
by 7.3% for kidneys and 9.7% for pancreas, while being ~7 times faster than two
strong baseline segmentation methods(nnUNet and CoTr).
Related papers
- Multi-target and multi-stage liver lesion segmentation and detection in multi-phase computed tomography scans [12.090385175034305]
Liver lesions vary significantly in their size, shape, texture, and contrast with respect to surrounding tissue.
Current state-of-the-art lesion segmentation networks use the encoder-decoder design paradigm based on the UNet architecture.
Our approach improves relative liver lesion segmentation performance by 1.6% while reducing performance variability across subjects by 8% when compared to the current state-of-the-art models.
arXiv Detail & Related papers (2024-04-17T08:05:04Z) - CIS-UNet: Multi-Class Segmentation of the Aorta in Computed Tomography
Angiography via Context-Aware Shifted Window Self-Attention [10.335899694123711]
We introduce Context Infused Swin-UNet (CIS-UNet), a deep learning model for aortic segmentation.
CIS-UNet adopts a hierarchical encoder-decoder structure comprising a CNN encoder, symmetric decoder, skip connections, and a novel Context-aware Shifted Window Self-Attention (CSW-SA) as the bottleneck block.
We trained our model on computed tomography (CT) scans from 44 patients and tested it on 15 patients. CIS-UNet outperformed the state-of-the-art SwinUNetR segmentation model, by achieving a superior mean Dice coefficient of 0.713 compared
arXiv Detail & Related papers (2024-01-23T19:17:20Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
Abdominal organ segmentation from CT and MRI is an essential prerequisite for surgical planning and computer-aided navigation systems.
We employ template-based mesh reconstruction methods for joint liver, kidney, pancreas, and spleen segmentation.
The resulting method, UNetFlow, generalizes well to all four organs and can be easily fine-tuned on new data.
arXiv Detail & Related papers (2023-06-27T14:41:18Z) - CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection [36.08551407926805]
We propose the CLIP-Driven Universal Model, which incorporates text embedding learned from Contrastive Language-Image Pre-training to segmentation models.
The proposed model is developed from an assembly of 14 datasets, using a total of 3,410 CT scans for training and then evaluated on 6,162 external CT scans from 3 additional datasets.
arXiv Detail & Related papers (2023-01-02T18:07:44Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
We propose a Transformer based dynamic on-demand network (TransDoDNet) that learns to segment organs and tumors on multiple datasets.
A dynamic head enables the network to accomplish multiple segmentation tasks flexibly.
We create a large-scale partially labeled Multi-Organ and Tumor benchmark, termed MOTS, and demonstrate the superior performance of our TransDoDNet over other competitors.
arXiv Detail & Related papers (2022-11-13T13:03:09Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - Weakly Supervised 3D Classification of Chest CT using Aggregated
Multi-Resolution Deep Segmentation Features [5.938730586521215]
Weakly supervised disease classification of CT imaging suffers from poor localization owing to case-level annotations.
We propose a medical classifier that leverages semantic structural concepts learned via multi-resolution segmentation feature maps.
arXiv Detail & Related papers (2020-10-31T00:16:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.