CIS-UNet: Multi-Class Segmentation of the Aorta in Computed Tomography
Angiography via Context-Aware Shifted Window Self-Attention
- URL: http://arxiv.org/abs/2401.13049v1
- Date: Tue, 23 Jan 2024 19:17:20 GMT
- Title: CIS-UNet: Multi-Class Segmentation of the Aorta in Computed Tomography
Angiography via Context-Aware Shifted Window Self-Attention
- Authors: Muhammad Imran, Jonathan R Krebs, Veera Rajasekhar Reddy Gopu, Brian
Fazzone, Vishal Balaji Sivaraman, Amarjeet Kumar, Chelsea Viscardi, Robert
Evans Heithaus, Benjamin Shickel, Yuyin Zhou, Michol A Cooper, Wei Shao
- Abstract summary: We introduce Context Infused Swin-UNet (CIS-UNet), a deep learning model for aortic segmentation.
CIS-UNet adopts a hierarchical encoder-decoder structure comprising a CNN encoder, symmetric decoder, skip connections, and a novel Context-aware Shifted Window Self-Attention (CSW-SA) as the bottleneck block.
We trained our model on computed tomography (CT) scans from 44 patients and tested it on 15 patients. CIS-UNet outperformed the state-of-the-art SwinUNetR segmentation model, by achieving a superior mean Dice coefficient of 0.713 compared
- Score: 10.335899694123711
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Advancements in medical imaging and endovascular grafting have facilitated
minimally invasive treatments for aortic diseases. Accurate 3D segmentation of
the aorta and its branches is crucial for interventions, as inaccurate
segmentation can lead to erroneous surgical planning and endograft
construction. Previous methods simplified aortic segmentation as a binary image
segmentation problem, overlooking the necessity of distinguishing between
individual aortic branches. In this paper, we introduce Context Infused
Swin-UNet (CIS-UNet), a deep learning model designed for multi-class
segmentation of the aorta and thirteen aortic branches. Combining the strengths
of Convolutional Neural Networks (CNNs) and Swin transformers, CIS-UNet adopts
a hierarchical encoder-decoder structure comprising a CNN encoder, symmetric
decoder, skip connections, and a novel Context-aware Shifted Window
Self-Attention (CSW-SA) as the bottleneck block. Notably, CSW-SA introduces a
unique utilization of the patch merging layer, distinct from conventional Swin
transformers. It efficiently condenses the feature map, providing a global
spatial context and enhancing performance when applied at the bottleneck layer,
offering superior computational efficiency and segmentation accuracy compared
to the Swin transformers. We trained our model on computed tomography (CT)
scans from 44 patients and tested it on 15 patients. CIS-UNet outperformed the
state-of-the-art SwinUNetR segmentation model, which is solely based on Swin
transformers, by achieving a superior mean Dice coefficient of 0.713 compared
to 0.697, and a mean surface distance of 2.78 mm compared to 3.39 mm.
CIS-UNet's superior 3D aortic segmentation offers improved precision and
optimization for planning endovascular treatments. Our dataset and code will be
publicly available.
Related papers
- SegStitch: Multidimensional Transformer for Robust and Efficient Medical Imaging Segmentation [15.811141677039224]
State-of-the-art methods, particularly those utilizing transformers, have been prominently adopted in 3D semantic segmentation.
However, plain vision transformers encounter challenges due to their neglect of local features and their high computational complexity.
We propose SegStitch, an innovative architecture that integrates transformers with denoising ODE blocks.
arXiv Detail & Related papers (2024-08-01T12:05:02Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Segmentation of Aortic Vessel Tree in CT Scans with Deep Fully
Convolutional Networks [4.062948258086793]
Automatic and accurate segmentation of aortic vessel tree (AVT) in computed tomography (CT) scans is crucial for early detection, diagnosis and prognosis of aortic diseases.
We use two-stage fully convolutional networks (FCNs) to automatically segment AVT in scans from multiple centers.
arXiv Detail & Related papers (2023-05-16T22:24:01Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - WSC-Trans: A 3D network model for automatic multi-structural
segmentation of temporal bone CT [5.821303529939008]
We propose a 3D network model for automatic segmentation of multi-structural targets in temporal bone CT.
The algorithm combines CNN and Transformer for feature extraction and takes advantage of spatial attention and channel attention mechanisms to further improve the segmentation effect.
arXiv Detail & Related papers (2022-11-14T06:44:37Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors
in MRI Images [7.334185314342017]
We propose a novel segmentation model termed Swin UNEt TRansformers (Swin UNETR)
The model extracts features at five different resolutions by utilizing shifted windows for computing self-attention.
We have participated in BraTS 2021 segmentation challenge, and our proposed model ranks among the top-performing approaches in the validation phase.
arXiv Detail & Related papers (2022-01-04T18:01:34Z) - Automatic Segmentation of Organs-at-Risk from Head-and-Neck CT using
Separable Convolutional Neural Network with Hard-Region-Weighted Loss [10.93840864507459]
Nasopharyngeal Carcinoma (NPC) is a leading form of Head-and-Neck (HAN) cancer in the Arctic, China, Southeast Asia, and the Middle East/North Africa.
Accurate segmentation of Organs-at-Risk (OAR) from Computed Tomography (CT) images with uncertainty information is critical for effective planning of radiation therapy for NPC treatment.
We propose a novel framework for accurate OAR segmentation with reliable uncertainty estimation.
arXiv Detail & Related papers (2021-02-03T06:31:38Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.