YOLO-FaceV2: A Scale and Occlusion Aware Face Detector
- URL: http://arxiv.org/abs/2208.02019v2
- Date: Thu, 4 Aug 2022 16:29:08 GMT
- Title: YOLO-FaceV2: A Scale and Occlusion Aware Face Detector
- Authors: Ziping Yu, Hongbo Huang, Weijun Chen, Yongxin Su, Yahui Liu, Xiuying
Wang
- Abstract summary: We propose a real-time face detector based on the one-stage detector YOLOv5, named YOLO-FaceV2.
We use a Receptive Field Enhancement module called RFE to enhance receptive field of small face, and use NWD Loss to make up for the sensitivity of IoU to the location deviation of tiny objects.
We show that our face detector outperforms YOLO and its variants can be find in all easy, medium and hard subsets.
- Score: 3.632920443532506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, face detection algorithms based on deep learning have made
great progress. These algorithms can be generally divided into two categories,
i.e. two-stage detector like Faster R-CNN and one-stage detector like YOLO.
Because of the better balance between accuracy and speed, one-stage detectors
have been widely used in many applications. In this paper, we propose a
real-time face detector based on the one-stage detector YOLOv5, named
YOLO-FaceV2. We design a Receptive Field Enhancement module called RFE to
enhance receptive field of small face, and use NWD Loss to make up for the
sensitivity of IoU to the location deviation of tiny objects. For face
occlusion, we present an attention module named SEAM and introduce Repulsion
Loss to solve it. Moreover, we use a weight function Slide to solve the
imbalance between easy and hard samples and use the information of the
effective receptive field to design the anchor. The experimental results on
WiderFace dataset show that our face detector outperforms YOLO and its variants
can be find in all easy, medium and hard subsets. Source code in
https://github.com/Krasjet-Yu/YOLO-FaceV2
Related papers
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
We build a new laRge-scale Adervsarial images dataset with Diverse hArmful Responses (RADAR)
We then develop a novel iN-time Embedding-based AdveRSarial Image DEtection (NEARSIDE) method, which exploits a single vector that distilled from the hidden states of Visual Language Models (VLMs) to achieve the detection of adversarial images against benign ones in the input.
arXiv Detail & Related papers (2024-10-30T10:33:10Z) - Simplifying Two-Stage Detectors for On-Device Inference in Remote Sensing [0.7305342793164903]
We propose a model simplification method for two-stage object detectors.
Our method reduces computation costs upto 61.2% with the accuracy loss within 2.1% on the DOTAv1.5 dataset.
arXiv Detail & Related papers (2024-04-11T00:45:10Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also be used as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - Towards End-to-end Semi-supervised Learning for One-stage Object
Detection [88.56917845580594]
This paper focuses on the semi-supervised learning for the advanced and popular one-stage detection network YOLOv5.
We propose a novel teacher-student learning recipe called OneTeacher with two innovative designs, namely Multi-view Pseudo-label Refinement (MPR) and Decoupled Semi-supervised Optimization (DSO)
In particular, MPR improves the quality of pseudo-labels via augmented-view refinement and global-view filtering, and DSO handles the joint optimization conflicts via structure tweaks and task-specific pseudo-labeling.
arXiv Detail & Related papers (2023-02-22T11:35:40Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Embracing Single Stride 3D Object Detector with Sparse Transformer [63.179720817019096]
In LiDAR-based 3D object detection for autonomous driving, the ratio of the object size to input scene size is significantly smaller compared to 2D detection cases.
Many 3D detectors directly follow the common practice of 2D detectors, which downsample the feature maps even after quantizing the point clouds.
We propose Single-stride Sparse Transformer (SST) to maintain the original resolution from the beginning to the end of the network.
arXiv Detail & Related papers (2021-12-13T02:12:02Z) - YOLO5Face: Why Reinventing a Face Detector [1.3272510644778104]
We implement a face detector based on YOLOv5 object detector and call it YOLO5Face.
We design detectors with different model sizes to achieve the best performance.
Experiment results on the WiderFace dataset show that our face detectors can achieve state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:54:38Z) - MogFace: Rethinking Scale Augmentation on the Face Detector [17.570686622370403]
We investigate the difference among the previous solutions, including the fore-ground and back-ground information of an image and the scale information.
We propose a Selective Scale Enhancement (SSE) strategy which can assimilate these two information efficiently and simultaneously.
Our method achieves state-of-the-art detection performance on all common face detection benchmarks.
arXiv Detail & Related papers (2021-03-20T09:17:04Z) - Long-distance tiny face detection based on enhanced YOLOv3 for unmanned
system [10.856903504701712]
We propose an enhanced network model (YOLOv3-C) based on the YOLOv3 algorithm for unmanned platform.
The enhanced model improves the accuracy of tiny face detection in the cases of long-distance and high-density crowds.
arXiv Detail & Related papers (2020-10-09T08:12:58Z) - Deep Spatial Gradient and Temporal Depth Learning for Face Anti-spoofing [61.82466976737915]
Depth supervised learning has been proven as one of the most effective methods for face anti-spoofing.
We propose a new approach to detect presentation attacks from multiple frames based on two insights.
The proposed approach achieves state-of-the-art results on five benchmark datasets.
arXiv Detail & Related papers (2020-03-18T06:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.