Simplifying Two-Stage Detectors for On-Device Inference in Remote Sensing
- URL: http://arxiv.org/abs/2404.07405v1
- Date: Thu, 11 Apr 2024 00:45:10 GMT
- Title: Simplifying Two-Stage Detectors for On-Device Inference in Remote Sensing
- Authors: Jaemin Kang, Hoeseok Yang, Hyungshin Kim,
- Abstract summary: We propose a model simplification method for two-stage object detectors.
Our method reduces computation costs upto 61.2% with the accuracy loss within 2.1% on the DOTAv1.5 dataset.
- Score: 0.7305342793164903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has been successfully applied to object detection from remotely sensed images. Images are typically processed on the ground rather than on-board due to the computation power of the ground system. Such offloaded processing causes delays in acquiring target mission information, which hinders its application to real-time use cases. For on-device object detection, researches have been conducted on designing efficient detectors or model compression to reduce inference latency. However, highly accurate two-stage detectors still need further exploitation for acceleration. In this paper, we propose a model simplification method for two-stage object detectors. Instead of constructing a general feature pyramid, we utilize only one feature extraction in the two-stage detector. To compensate for the accuracy drop, we apply a high pass filter to the RPN's score map. Our approach is applicable to any two-stage detector using a feature pyramid network. In the experiments with state-of-the-art two-stage detectors such as ReDet, Oriented-RCNN, and LSKNet, our method reduced computation costs upto 61.2% with the accuracy loss within 2.1% on the DOTAv1.5 dataset. Source code will be released.
Related papers
- Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
This work addresses the challenge of sub-pixel accuracy in detecting 2D local features.
We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features.
arXiv Detail & Related papers (2024-07-16T12:39:56Z) - Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7 one-stage detector is subjected to a novel meta-learning training framework.
This transformation allows the detector to adeptly address FSOD tasks while capitalizing on its inherent advantage of lightweight.
To validate the effectiveness of our proposed detector, we conducted performance comparisons with current state-of-the-art detectors.
arXiv Detail & Related papers (2024-04-29T04:56:52Z) - SpirDet: Towards Efficient, Accurate and Lightweight Infrared Small
Target Detector [60.42293239557962]
We propose SpirDet, a novel approach for efficient detection of infrared small targets.
We employ a new dual-branch sparse decoder to restore the feature map.
Extensive experiments show that the proposed SpirDet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-02-08T05:06:14Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
Vision transformers (ViTs) are changing the landscape of object detection approaches.
We propose a decoder-free fully transformer-based (DFFT) object detector.
DFFT_SMALL achieves high efficiency in both training and inference stages.
arXiv Detail & Related papers (2022-06-14T13:22:19Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - From One to Many: A Deep Learning Coincident Gravitational-Wave Search [58.720142291102135]
We construct a two-detector search for gravitational waves from binary black hole mergers using neural networks trained on non-spinning binary black hole data from a single detector.
We find that none of these simple two-detector networks are capable of improving the sensitivity over applying networks individually to the data from the detectors.
arXiv Detail & Related papers (2021-08-24T13:25:02Z) - Oriented R-CNN for Object Detection [61.78746189807462]
This work proposes an effective and simple oriented object detection framework, termed Oriented R-CNN.
In the first stage, we propose an oriented Region Proposal Network (oriented RPN) that directly generates high-quality oriented proposals in a nearly cost-free manner.
The second stage is oriented R-CNN head for refining oriented Regions of Interest (oriented RoIs) and recognizing them.
arXiv Detail & Related papers (2021-08-12T12:47:43Z) - QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small
Object Detection [17.775203579232144]
We propose a novel query mechanism to accelerate the inference speed of feature-pyramid based object detectors.
The pipeline first predicts the coarse locations of small objects on low-resolution features and then computes the accurate detection results using high-resolution features.
On the popular COCO dataset, the proposed method improves the detection mAP by 1.0 and mAP-small by 2.0, and the high-resolution inference speed is improved to 3.0x on average.
arXiv Detail & Related papers (2021-03-16T15:30:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.