Unsupervised Discovery of Semantic Concepts in Satellite Imagery with
Style-based Wavelet-driven Generative Models
- URL: http://arxiv.org/abs/2208.02089v1
- Date: Wed, 3 Aug 2022 14:19:24 GMT
- Title: Unsupervised Discovery of Semantic Concepts in Satellite Imagery with
Style-based Wavelet-driven Generative Models
- Authors: Nikos Kostagiolas, Mihalis A. Nicolaou, Yannis Panagakis
- Abstract summary: We present the first pre-trained style- and wavelet-based GAN model that can synthesize a wide gamut of realistic satellite images.
We show that by analyzing the intermediate activations of our network, one can discover a multitude of interpretable semantic directions.
- Score: 27.62417543307831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, considerable advancements have been made in the area of
Generative Adversarial Networks (GANs), particularly with the advent of
style-based architectures that address many key shortcomings - both in terms of
modeling capabilities and network interpretability. Despite these improvements,
the adoption of such approaches in the domain of satellite imagery is not
straightforward. Typical vision datasets used in generative tasks are
well-aligned and annotated, and exhibit limited variability. In contrast,
satellite imagery exhibits great spatial and spectral variability, wide
presence of fine, high-frequency details, while the tedious nature of
annotating satellite imagery leads to annotation scarcity - further motivating
developments in unsupervised learning. In this light, we present the first
pre-trained style- and wavelet-based GAN model that can readily synthesize a
wide gamut of realistic satellite images in a variety of settings and
conditions - while also preserving high-frequency information. Furthermore, we
show that by analyzing the intermediate activations of our network, one can
discover a multitude of interpretable semantic directions that facilitate the
guided synthesis of satellite images in terms of high-level concepts (e.g.,
urbanization) without using any form of supervision. Via a set of qualitative
and quantitative experiments we demonstrate the efficacy of our framework, in
terms of suitability for downstream tasks (e.g., data augmentation), quality of
synthetic imagery, as well as generalization capabilities to unseen datasets.
Related papers
- Edge-Cloud Collaborative Satellite Image Analysis for Efficient Man-Made Structure Recognition [2.110762118285028]
The paper presents a new satellite image processing architecture combining edge and cloud computing.
By employing lightweight models at the edge, the system initially identifies potential man-made structures from satellite imagery.
These identified images are then transmitted to the cloud, where a more complex model refines the classification.
arXiv Detail & Related papers (2024-10-08T03:31:32Z) - Geospecific View Generation -- Geometry-Context Aware High-resolution Ground View Inference from Satellite Views [5.146618378243241]
We propose a novel pipeline to generate geospecifc views that maximally respect the weak geometry and texture from multi-view satellite images.
Our method directly predicts ground-view images at geolocation by using a comprehensive set of information from the satellite image.
We demonstrate our pipeline is the first to generate close-to-real and geospecific ground views merely based on satellite images.
arXiv Detail & Related papers (2024-07-10T21:51:50Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - SatDM: Synthesizing Realistic Satellite Image with Semantic Layout
Conditioning using Diffusion Models [0.0]
Denoising Diffusion Probabilistic Models (DDPMs) have demonstrated significant promise in synthesizing realistic images from semantic layouts.
In this paper, a conditional DDPM model capable of taking a semantic map and generating high-quality, diverse, and correspondingly accurate satellite images is implemented.
The effectiveness of our proposed model is validated using a meticulously labeled dataset introduced within the context of this study.
arXiv Detail & Related papers (2023-09-28T19:39:13Z) - Locality-preserving Directions for Interpreting the Latent Space of
Satellite Image GANs [20.010911311234718]
We present a locality-aware method for interpreting the latent space of wavelet-based Generative Adversarial Networks (GANs)
By focusing on preserving locality, the proposed method is able to decompose the weight-space of pre-trained GANs and recover interpretable directions.
arXiv Detail & Related papers (2023-09-26T12:29:36Z) - SSMG: Spatial-Semantic Map Guided Diffusion Model for Free-form
Layout-to-Image Generation [68.42476385214785]
We propose a novel Spatial-Semantic Map Guided (SSMG) diffusion model that adopts the feature map, derived from the layout, as guidance.
SSMG achieves superior generation quality with sufficient spatial and semantic controllability compared to previous works.
We also propose the Relation-Sensitive Attention (RSA) and Location-Sensitive Attention (LSA) mechanisms.
arXiv Detail & Related papers (2023-08-20T04:09:12Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - SatMAE: Pre-training Transformers for Temporal and Multi-Spectral
Satellite Imagery [74.82821342249039]
We present SatMAE, a pre-training framework for temporal or multi-spectral satellite imagery based on Masked Autoencoder (MAE)
To leverage temporal information, we include a temporal embedding along with independently masking image patches across time.
arXiv Detail & Related papers (2022-07-17T01:35:29Z) - A Trainable Spectral-Spatial Sparse Coding Model for Hyperspectral Image
Restoration [36.525810477650026]
Hyperspectral imaging offers new perspectives for diverse applications.
The lack of accurate ground-truth "clean" hyperspectral signals on the spot makes restoration tasks challenging.
In this paper, we advocate for a hybrid approach based on sparse coding principles.
arXiv Detail & Related papers (2021-11-18T14:16:04Z) - Enhancing Photorealism Enhancement [83.88433283714461]
We present an approach to enhancing the realism of synthetic images using a convolutional network.
We analyze scene layout distributions in commonly used datasets and find that they differ in important ways.
We report substantial gains in stability and realism in comparison to recent image-to-image translation methods.
arXiv Detail & Related papers (2021-05-10T19:00:49Z) - Single Image Deraining via Scale-space Invariant Attention Neural
Network [58.5284246878277]
We tackle the notion of scale that deals with visual changes in appearance of rain steaks with respect to the camera.
We propose to represent the multi-scale correlation in convolutional feature domain, which is more compact and robust than that in pixel domain.
In this way, we summarize the most activated presence of feature maps as the salient features.
arXiv Detail & Related papers (2020-06-09T04:59:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.