Edge-Cloud Collaborative Satellite Image Analysis for Efficient Man-Made Structure Recognition
- URL: http://arxiv.org/abs/2410.05665v1
- Date: Tue, 8 Oct 2024 03:31:32 GMT
- Title: Edge-Cloud Collaborative Satellite Image Analysis for Efficient Man-Made Structure Recognition
- Authors: Kaicheng Sheng, Junxiao Xue, Hui Zhang,
- Abstract summary: The paper presents a new satellite image processing architecture combining edge and cloud computing.
By employing lightweight models at the edge, the system initially identifies potential man-made structures from satellite imagery.
These identified images are then transmitted to the cloud, where a more complex model refines the classification.
- Score: 2.110762118285028
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The increasing availability of high-resolution satellite imagery has created immense opportunities for various applications. However, processing and analyzing such vast amounts of data in a timely and accurate manner poses significant challenges. The paper presents a new satellite image processing architecture combining edge and cloud computing to better identify man-made structures against natural landscapes. By employing lightweight models at the edge, the system initially identifies potential man-made structures from satellite imagery. These identified images are then transmitted to the cloud, where a more complex model refines the classification, determining specific types of structures. The primary focus is on the trade-off between latency and accuracy, as efficient models often sacrifice accuracy. We compare this hybrid edge-cloud approach against traditional "bent-pipe" method in virtual environment experiments as well as introduce a practical model and compare its performance with existing lightweight models for edge deployment, focusing on accuracy and latency. The results demonstrate that the edge-cloud collaborative model not only reduces overall latency due to minimized data transmission but also maintains high accuracy, offering substantial improvements over traditional approaches under this scenario.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - CLiSA: A Hierarchical Hybrid Transformer Model using Orthogonal Cross
Attention for Satellite Image Cloud Segmentation [5.178465447325005]
Deep learning algorithms have emerged as promising approach to solve image segmentation problems.
In this paper, we introduce a deep-learning model for effective cloud mask generation named CLiSA - Cloud segmentation via Lipschitz Stable Attention network.
We demonstrate both qualitative and quantitative outcomes for multiple satellite image datasets including Landsat-8, Sentinel-2, and Cartosat-2s.
arXiv Detail & Related papers (2023-11-29T09:31:31Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - DiffCR: A Fast Conditional Diffusion Framework for Cloud Removal from
Optical Satellite Images [27.02507384522271]
This paper presents a novel framework called DiffCR, which leverages conditional guided diffusion with deep convolutional networks for high-performance cloud removal for optical satellite imagery.
We introduce a decoupled encoder for conditional image feature extraction, providing a robust color representation to ensure the close similarity of appearance information between the conditional input and the synthesized output.
arXiv Detail & Related papers (2023-08-08T17:34:28Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Cloud removal Using Atmosphere Model [7.259230333873744]
Cloud removal is an essential task in remote sensing data analysis.
We propose to use scattering model for temporal sequence of images of any scene in the framework of low rank and sparse models.
We develop a semi-realistic simulation method to produce cloud cover so that various methods can be quantitatively analysed.
arXiv Detail & Related papers (2022-10-05T01:29:19Z) - Unsupervised Discovery of Semantic Concepts in Satellite Imagery with
Style-based Wavelet-driven Generative Models [27.62417543307831]
We present the first pre-trained style- and wavelet-based GAN model that can synthesize a wide gamut of realistic satellite images.
We show that by analyzing the intermediate activations of our network, one can discover a multitude of interpretable semantic directions.
arXiv Detail & Related papers (2022-08-03T14:19:24Z) - Towards a Unified Approach to Single Image Deraining and Dehazing [16.383099109400156]
We develop a new physical model for the rain effect and show that the well-known atmosphere scattering model (ASM) for the haze effect naturally emerges as its homogeneous continuous limit.
We also propose a Densely Scale-Connected Attentive Network (DSCAN) that is suitable for both deraining and dehazing tasks.
arXiv Detail & Related papers (2021-03-26T01:35:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.