Head Pose Estimation and 3D Neural Surface Reconstruction via Monocular Camera in situ for Navigation and Safe Insertion into Natural Openings
- URL: http://arxiv.org/abs/2406.13048v1
- Date: Tue, 18 Jun 2024 20:42:09 GMT
- Title: Head Pose Estimation and 3D Neural Surface Reconstruction via Monocular Camera in situ for Navigation and Safe Insertion into Natural Openings
- Authors: Ruijie Tang, Beilei Cui, Hongliang Ren,
- Abstract summary: We have chosen 3D Slicer as our base platform and monocular cameras are used as sensors.
We used the neural radiance fields (NeRF) algorithm to complete the 3D model reconstruction of the human head.
The individual's head pose, obtained through single-camera vision, is transmitted in real-time to the scene created within 3D Slicer.
- Score: 4.592222359553848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the significance of simulation in medical care and intervention continues to grow, it is anticipated that a simplified and low-cost platform can be set up to execute personalized diagnoses and treatments. 3D Slicer can not only perform medical image analysis and visualization but can also provide surgical navigation and surgical planning functions. In this paper, we have chosen 3D Slicer as our base platform and monocular cameras are used as sensors. Then, We used the neural radiance fields (NeRF) algorithm to complete the 3D model reconstruction of the human head. We compared the accuracy of the NeRF algorithm in generating 3D human head scenes and utilized the MarchingCube algorithm to generate corresponding 3D mesh models. The individual's head pose, obtained through single-camera vision, is transmitted in real-time to the scene created within 3D Slicer. The demonstrations presented in this paper include real-time synchronization of transformations between the human head model in the 3D Slicer scene and the detected head posture. Additionally, we tested a scene where a tool, marked with an ArUco Maker tracked by a single camera, synchronously points to the real-time transformation of the head posture. These demos indicate that our methodology can provide a feasible real-time simulation platform for nasopharyngeal swab collection or intubation.
Related papers
- SLAM assisted 3D tracking system for laparoscopic surgery [22.36252790404779]
This work proposes a real-time monocular 3D tracking algorithm for post-registration tasks.
Experiments from in-vivo and ex-vivo tests demonstrate that the proposed 3D tracking system provides robust 3D tracking.
arXiv Detail & Related papers (2024-09-18T04:00:54Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - MinD-3D: Reconstruct High-quality 3D objects in Human Brain [50.534007259536715]
Recon3DMind is an innovative task aimed at reconstructing 3D visuals from Functional Magnetic Resonance Imaging (fMRI) signals.
We present the fMRI-Shape dataset, which includes data from 14 participants and features 360-degree videos of 3D objects.
We propose MinD-3D, a novel and effective three-stage framework specifically designed to decode the brain's 3D visual information from fMRI signals.
arXiv Detail & Related papers (2023-12-12T18:21:36Z) - Intraoperative 2D/3D Image Registration via Differentiable X-ray Rendering [5.617649111108429]
We present DiffPose, a self-supervised approach that leverages patient-specific simulation and differentiable physics-based rendering to achieve accurate 2D/3D registration without relying on manually labeled data.
DiffPose achieves sub-millimeter accuracy across surgical datasets at intraoperative speeds, improving upon existing unsupervised methods by an order of magnitude and even outperforming supervised baselines.
arXiv Detail & Related papers (2023-12-11T13:05:54Z) - Decaf: Monocular Deformation Capture for Face and Hand Interactions [77.75726740605748]
This paper introduces the first method that allows tracking human hands interacting with human faces in 3D from single monocular RGB videos.
We model hands as articulated objects inducing non-rigid face deformations during an active interaction.
Our method relies on a new hand-face motion and interaction capture dataset with realistic face deformations acquired with a markerless multi-view camera system.
arXiv Detail & Related papers (2023-09-28T17:59:51Z) - OmniAvatar: Geometry-Guided Controllable 3D Head Synthesis [81.70922087960271]
We present OmniAvatar, a novel geometry-guided 3D head synthesis model trained from in-the-wild unstructured images.
Our model can synthesize more preferable identity-preserved 3D heads with compelling dynamic details compared to the state-of-the-art methods.
arXiv Detail & Related papers (2023-03-27T18:36:53Z) - CNN-based real-time 2D-3D deformable registration from a single X-ray
projection [2.1198879079315573]
This paper presents a method for real-time 2D-3D non-rigid registration using a single fluoroscopic image.
A dataset composed of displacement fields and 2D projections of the anatomy is generated from a preoperative scan.
A neural network is trained to recover the unknown 3D displacement field from a single projection image.
arXiv Detail & Related papers (2022-12-15T09:57:19Z) - Free-HeadGAN: Neural Talking Head Synthesis with Explicit Gaze Control [54.079327030892244]
Free-HeadGAN is a person-generic neural talking head synthesis system.
We show that modeling faces with sparse 3D facial landmarks are sufficient for achieving state-of-the-art generative performance.
arXiv Detail & Related papers (2022-08-03T16:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.