論文の概要: Dynamic Planning in Open-Ended Dialogue using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2208.02294v1
- Date: Mon, 25 Jul 2022 16:12:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-07 14:16:31.698338
- Title: Dynamic Planning in Open-Ended Dialogue using Reinforcement Learning
- Title(参考訳): 強化学習を用いたオープンエンド対話の動的計画
- Authors: Deborah Cohen, Moonkyung Ryu, Yinlam Chow, Orgad Keller, Ido
Greenberg, Avinatan Hassidim, Michael Fink, Yossi Matias, Idan Szpektor,
Craig Boutilier, Gal Elidan
- Abstract要約: 我々は、強化学習(RL)を用いて、ロボットの対話能力を大規模に活用するリアルタイムかつオープンな対話システムを開発した。
我々の作業は、動的行動空間に特に適するRL技術とSOTA言語モデルを用いて生成された会話状態の簡潔な埋め込みをペアリングする。
- 参考スコア(独自算出の注目度): 35.67318830455459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent advances in natural language understanding and generation, and
decades of research on the development of conversational bots, building
automated agents that can carry on rich open-ended conversations with humans
"in the wild" remains a formidable challenge. In this work we develop a
real-time, open-ended dialogue system that uses reinforcement learning (RL) to
power a bot's conversational skill at scale. Our work pairs the succinct
embedding of the conversation state generated using SOTA (supervised) language
models with RL techniques that are particularly suited to a dynamic action
space that changes as the conversation progresses. Trained using crowd-sourced
data, our novel system is able to substantially exceeds the (strong) baseline
supervised model with respect to several metrics of interest in a live
experiment with real users of the Google Assistant.
- Abstract(参考訳): 自然言語理解と生成の最近の進歩、会話型ボットの開発に関する何十年もの研究にもかかわらず、人間と「野生」でリッチにオープンな会話を継続できる自動エージェントの開発は、非常に難しい課題である。
本研究では、強化学習(RL)を用いてロボットの対話能力を大規模に活用するリアルタイム・オープンエンド対話システムの開発を行う。
我々の研究は、会話の進行に伴って変化する動的行動空間に特に適するSOTA言語モデルとRL技術を用いて生成された会話状態の簡潔な埋め込みをペアリングする。
クラウドソースデータを用いてトレーニングされた新しいシステムは、Google Assistantの実際のユーザを対象にしたライブ実験において、いくつかの興味の指標に関して、(強い)ベースライン教師付きモデルを大幅に超えることができる。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - AutoConv: Automatically Generating Information-seeking Conversations
with Large Language Models [74.10293412011455]
合成会話生成のためのAutoConvを提案する。
具体的には,会話生成問題を言語モデリングタスクとして定式化する。
我々は、情報探索プロセスの特徴を捉えるために、人間同士の会話でLLMを微調整する。
論文 参考訳(メタデータ) (2023-08-12T08:52:40Z) - ChatPLUG: Open-Domain Generative Dialogue System with Internet-Augmented
Instruction Tuning for Digital Human [76.62897301298699]
ChatPLUGは、デジタルヒューマンアプリケーションのための中国のオープンドメイン対話システムである。
モデルネームは, 自動評価と人的評価の両方において, 最先端の中国語対話システムより優れていることを示す。
高速な推論でスマートスピーカーやインスタントメッセージアプリケーションのような実世界のアプリケーションにモデルネームをデプロイします。
論文 参考訳(メタデータ) (2023-04-16T18:16:35Z) - Lifelong and Continual Learning Dialogue Systems [14.965054800464259]
本書は生涯学習対話システムの新たなパラダイムを紹介する。
システムがより多くのユーザとチャットしたり、外部ソースからより多くのことを学ぶようになると、会話の知識が増し、より良くなる。
論文 参考訳(メタデータ) (2022-11-12T02:39:41Z) - Grounding in social media: An approach to building a chit-chat dialogue
model [9.247397520986999]
豊かな人間のような会話能力を持つオープンドメイン対話システムを構築することは、言語生成における根本的な課題の1つである。
知識に基づく対話生成に関する現在の研究は、主にウィキペディアのような事実に基づく構造化知識ソースを法人化または検索することに焦点を当てている。
本手法は,ソーシャルメディア上での人間の反応行動の模倣によって,システムの生会話能力を向上させることを目的とした,より広範かつシンプルなアプローチである。
論文 参考訳(メタデータ) (2022-06-12T09:01:57Z) - A Mixture-of-Expert Approach to RL-based Dialogue Management [56.08449336469477]
我々は、強化学習を用いて、近視性(一般的な発話の出力)を回避し、全体的なユーザ満足度を最大化する対話エージェントを開発する。
既存のRLアプローチのほとんどは、単語レベルでエージェントを訓練するので、中規模の語彙であっても、非常に複雑なアクション空間を扱う必要がある。
i)会話履歴の多様な意味を学習できるLMと、(ii)対応する発話を生成できる専門的なLM(または専門家)からなる、新しい専門家言語モデル(MoE-LM)を用いたRLベースのDMを開発する。
論文 参考訳(メタデータ) (2022-05-31T19:00:41Z) - A Review of Dialogue Systems: From Trained Monkeys to Stochastic Parrots [0.0]
人工知能をデプロイして、人間と会話できる自動対話エージェントを構築することを目指している。
本稿では,長年にわたって対話システムを構築するために開発された手法について概説する。
論文 参考訳(メタデータ) (2021-11-02T08:07:55Z) - Training Conversational Agents with Generative Conversational Networks [74.9941330874663]
我々は、生成会話ネットワークを使用して、自動的にデータを生成し、社会的会話エージェントを訓練する。
自動メトリクスと人的評価器を用いてTopicalChatのアプローチを評価し、10%のシードデータで100%のデータを使用するベースラインに近いパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-15T21:46:39Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
ごく少数の例を使って会話を学ぶことは、会話型AIにおける大きな課題である。
現在の最良の会話モデルは、良いチャットシャッター(例:BlenderBot)またはゴール指向システム(例:MinTL)である。
グラデーションベースの微調整を必要とせず、学習の唯一の源としていくつかの例を用いるプロンプトベースの数ショット学習を提案する。
論文 参考訳(メタデータ) (2021-10-15T14:36:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。