Counterfactual Image Synthesis for Discovery of Personalized Predictive
Image Markers
- URL: http://arxiv.org/abs/2208.02311v1
- Date: Wed, 3 Aug 2022 18:58:45 GMT
- Title: Counterfactual Image Synthesis for Discovery of Personalized Predictive
Image Markers
- Authors: Amar Kumar, Anjun Hu, Brennan Nichyporuk, Jean-Pierre R. Falet,
Douglas L. Arnold, Sotirios Tsaftaris, and Tal Arbel
- Abstract summary: We show how a deep conditional generative model can be used to perturb local imaging features in baseline images that are pertinent to subject-specific future disease evolution.
Our model produces counterfactuals with changes in imaging features that reflect established clinical markers predictive of future MRI lesional activity at the population level.
- Score: 0.293168019422713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of patient-specific imaging markers that are predictive of
future disease outcomes can help us better understand individual-level
heterogeneity of disease evolution. In fact, deep learning models that can
provide data-driven personalized markers are much more likely to be adopted in
medical practice. In this work, we demonstrate that data-driven biomarker
discovery can be achieved through a counterfactual synthesis process. We show
how a deep conditional generative model can be used to perturb local imaging
features in baseline images that are pertinent to subject-specific future
disease evolution and result in a counterfactual image that is expected to have
a different future outcome. Candidate biomarkers, therefore, result from
examining the set of features that are perturbed in this process. Through
several experiments on a large-scale, multi-scanner, multi-center multiple
sclerosis (MS) clinical trial magnetic resonance imaging (MRI) dataset of
relapsing-remitting (RRMS) patients, we demonstrate that our model produces
counterfactuals with changes in imaging features that reflect established
clinical markers predictive of future MRI lesional activity at the population
level. Additional qualitative results illustrate that our model has the
potential to discover novel and subject-specific predictive markers of future
activity.
Related papers
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
Diffusion Model (DM) has become a leading method in generating synthetic medical images, but it suffers from a critical twofold bias.
We propose FairSkin, a novel DM framework that mitigates these biases through a three-level resampling mechanism.
Our approach significantly improves the diversity and quality of generated images, contributing to more equitable skin disease detection in clinical settings.
arXiv Detail & Related papers (2024-10-29T21:37:03Z) - Individualized multi-horizon MRI trajectory prediction for Alzheimer's Disease [0.0]
We train a novel architecture to build a latent space distribution which can be sampled from to generate future predictions of changing anatomy.
By comparing to several alternatives, we show that our model produces more individualized images with higher resolution.
arXiv Detail & Related papers (2024-08-04T13:09:06Z) - Enhancing predictive imaging biomarker discovery through treatment effect analysis [2.8300022117286523]
This study focuses on the discovery of predictive imaging biomarkers, aiming to leverage pre-treatment images to unveil new causal relationships.
Previous approaches relied on labor-intensive handcrafted or manually derived features, which may introduce biases.
We propose an evaluation protocol for this task to assess a model's ability to identify predictive imaging biomarkers and differentiate them from prognostic ones.
arXiv Detail & Related papers (2024-06-04T17:54:44Z) - Discovering robust biomarkers of neurological disorders from functional MRI using graph neural networks: A Review [4.799269666410891]
We provide an overview of how GNN and model explainability techniques have been applied on fMRI datasets for disorder prediction tasks.
We find that while most studies have performant models, salient features highlighted in these studies vary greatly across studies on the same disorder.
We suggest establishing new standards that are based on objective evaluation metrics to determine the robustness of these potential biomarkers.
arXiv Detail & Related papers (2024-05-01T15:29:55Z) - Predicting Parkinson's disease trajectory using clinical and functional MRI features: a reproduction and replication study [1.621204680136386]
Parkinson's disease (PD) is a common neurodegenerative disorder with a poorly understood physiopathology.
Several neuroimaging biomarkers have been studied recently, but these are susceptible to several sources of variability.
This study is part of a larger project investigating the replicability of potential neuroimaging biomarkers of PD.
arXiv Detail & Related papers (2024-02-20T13:42:50Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Predicting survival of glioblastoma from automatic whole-brain and tumor
segmentation of MR images [1.0179233457605892]
We introduce novel imaging features that can be automatically computed from MR images and fed into machine learning models to predict patient survival.
The features measure the deformation caused by the tumor on the surrounding brain structures, comparing the shape of various structures in the patient's brain to their expected shape in healthy individuals.
We show that the proposed features carry prognostic value in terms of overall- and progression-free survival, over and above that of conventional non-imaging features.
arXiv Detail & Related papers (2021-09-25T10:49:51Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.