Individualized multi-horizon MRI trajectory prediction for Alzheimer's Disease
- URL: http://arxiv.org/abs/2408.02018v1
- Date: Sun, 4 Aug 2024 13:09:06 GMT
- Title: Individualized multi-horizon MRI trajectory prediction for Alzheimer's Disease
- Authors: Rosemary He, Gabriella Ang, Daniel Tward,
- Abstract summary: We train a novel architecture to build a latent space distribution which can be sampled from to generate future predictions of changing anatomy.
By comparing to several alternatives, we show that our model produces more individualized images with higher resolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neurodegeneration as measured through magnetic resonance imaging (MRI) is recognized as a potential biomarker for diagnosing Alzheimer's disease (AD), but is generally considered less specific than amyloid or tau based biomarkers. Due to a large amount of variability in brain anatomy between different individuals, we hypothesize that leveraging MRI time series can help improve specificity, by treating each patient as their own baseline. Here we turn to conditional variational autoencoders to generate individualized MRI predictions given the subject's age, disease status and one previous scan. Using serial imaging data from the Alzheimer's Disease Neuroimaging Initiative, we train a novel architecture to build a latent space distribution which can be sampled from to generate future predictions of changing anatomy. This enables us to extrapolate beyond the dataset and predict MRIs up to 10 years. We evaluated the model on a held-out set from ADNI and an independent dataset (from Open Access Series of Imaging Studies). By comparing to several alternatives, we show that our model produces more individualized images with higher resolution. Further, if an individual already has a follow-up MRI, we demonstrate a usage of our model to compute a likelihood ratio classifier for disease status. In practice, the model may be able to assist in early diagnosis of AD and provide a counterfactual baseline trajectory for treatment effect estimation. Furthermore, it generates a synthetic dataset that can potentially be used for downstream tasks such as anomaly detection and classification.
Related papers
- GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI [5.355943545567233]
Alzheimer's Disease (AD) is an irreversible neurodegenerative disorder that often progresses from Mild Cognitive Impairment (MCI)
We introduce GFE-Mamba, a classifier based on Generative Feature Extraction (GFE)
It integrates data from assessment scales, MRI, and PET, enabling deeper multimodal fusion.
Our experimental results demonstrate that the GFE-Mamba model is effective in predicting the conversion from MCI to AD.
arXiv Detail & Related papers (2024-07-22T15:22:33Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - Counterfactual Image Synthesis for Discovery of Personalized Predictive
Image Markers [0.293168019422713]
We show how a deep conditional generative model can be used to perturb local imaging features in baseline images that are pertinent to subject-specific future disease evolution.
Our model produces counterfactuals with changes in imaging features that reflect established clinical markers predictive of future MRI lesional activity at the population level.
arXiv Detail & Related papers (2022-08-03T18:58:45Z) - Improving the Diagnosis of Psychiatric Disorders with Self-Supervised
Graph State Space Models [0.0]
We present a framework to improve the diagnosis of heterogeneous psychiatric disorders from resting-state functional magnetic resonance imaging (rs-fMRI)
To model rs-fMRI data, we develop Graph-S4; an extension to the recently proposed state-space model S4 to graph settings where the underlying graph structure is not known in advance.
We show that combining the framework and Graph-S4 can significantly improve the diagnostic performance of neuroimaging-based single subject prediction models of MDD and ASD on three open-source multi-center rs-fMRI clinical datasets.
arXiv Detail & Related papers (2022-06-07T14:15:43Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score
for Predicting Future Conversion to Alzheimer's Disease [2.914776804701307]
We developed an image/genotype-based DAT score that represents a subject's likelihood of developing DAT in the future.
Using a pre-defined 0.5 threshold on DAT scores, we predicted whether or not a subject would develop DAT in the future.
arXiv Detail & Related papers (2022-03-11T01:35:30Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Multimodal Gait Recognition for Neurodegenerative Diseases [38.06704951209703]
We propose a novel hybrid model to learn the gait differences between three neurodegenerative diseases.
A new correlative memory neural network architecture is designed for extracting temporal features.
Compared with several state-of-the-art techniques, our proposed framework shows more accurate classification results.
arXiv Detail & Related papers (2021-01-07T10:17:11Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.