論文の概要: Differentiable Predictive Control with Safety Guarantees: A Control
Barrier Function Approach
- arxiv url: http://arxiv.org/abs/2208.02319v1
- Date: Wed, 3 Aug 2022 19:24:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-05 13:08:16.335111
- Title: Differentiable Predictive Control with Safety Guarantees: A Control
Barrier Function Approach
- Title(参考訳): 安全保証を考慮した微分可能予測制御:制御障壁関数アプローチ
- Authors: Wenceslao Shaw Cortez, Jan Drgona, Aaron Tuor, Mahantesh Halappanavar,
Draguna Vrabie
- Abstract要約: 我々は、安全性と堅牢性を保証する新しい形態の微分可能予測制御(DPC)を開発した。
DPCは、明示的モデル予測制御(MPC)問題に対する近似解を得るための教師なし学習に基づく手法である。
- 参考スコア(独自算出の注目度): 3.617866023850784
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We develop a novel form of differentiable predictive control (DPC) with
safety and robustness guarantees based on control barrier functions. DPC is an
unsupervised learning-based method for obtaining approximate solutions to
explicit model predictive control (MPC) problems. In DPC, the predictive
control policy parametrized by a neural network is optimized offline via direct
policy gradients obtained by automatic differentiation of the MPC problem. The
proposed approach exploits a new form of sampled-data barrier function to
enforce offline and online safety requirements in DPC settings while only
interrupting the neural network-based controller near the boundary of the safe
set. The effectiveness of the proposed approach is demonstrated in simulation.
- Abstract(参考訳): 我々は,制御障壁関数に基づく安全性と堅牢性を保証する新しい形態の微分可能予測制御(DPC)を開発した。
DPCは、明示的モデル予測制御(MPC)問題に対する近似解を得るための教師なし学習に基づく手法である。
DPCでは、ニューラルネットワークによってパラメータ化された予測制御ポリシを、MPC問題の自動微分によって得られる直接ポリシー勾配を介してオフラインに最適化する。
提案手法では、サンプルデータバリア関数の新たな形式を活用して、安全セットの境界付近でニューラルネットワークベースのコントローラを中断するのみながら、DPC設定のオフラインおよびオンラインの安全要件を強制する。
提案手法の有効性をシミュレーションにより実証した。
関連論文リスト
- Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
本稿では,非アフィン制御系における安全クリティカル制御の問題に対処する。
制御バリア関数(CBF)を用いて,状態制約と制御制約の2次コストの最適化を2次プログラムのシーケンス(QP)にサブ最適化できることが示されている。
我々は,高次CBFをニューラル常微分方程式に基づく学習モデルに差分CBFとして組み込んで,非アフィン制御系の安全性を保証する。
論文 参考訳(メタデータ) (2023-09-06T05:35:48Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
本稿では,任意の参照ポリシーをラップした制御フィルタを提案する。
本手法は、トップダウンとエゴセントリックの両方のビュー設定を含むシミュレーション環境における2つの異なるビズモータ制御タスクに有効である。
論文 参考訳(メタデータ) (2023-01-27T22:28:19Z) - Learning Stochastic Parametric Differentiable Predictive Control
Policies [2.042924346801313]
本稿では、ニューラルネットワークポリシーの教師なし学習のための、パラメトリック微分可能予測制御(SP-DPC)と呼ばれるスケーラブルな代替手法を提案する。
SP-DPCはパラメトリック制約最適制御問題に対する決定論的近似として定式化される。
閉ループ制約と確率満足度に関するSP-DPC法を用いて学習したポリシーに関する理論的確率的保証を提供する。
論文 参考訳(メタデータ) (2022-03-02T22:46:32Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
MPCのためのポリシ・フォー・モデル・予測制御フレームワークを提案する。
具体的には、パラメータ化コントローラとしてMPCを定式化し、パラメータ化の難しい決定変数を高レベルポリシーとして表現する。
シミュレーションと実環境の両方において,我々の制御器が堅牢かつリアルタイムに制御性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2021-12-07T17:39:24Z) - Deep Learning Explicit Differentiable Predictive Control Laws for
Buildings [1.4121977037543585]
未知の非線形システムに対する制約付き制御法を学習するための微分予測制御(DPC)手法を提案する。
DPCは、明示的非線形モデル予測制御(MPC)から生じるマルチパラメトリックプログラミング問題に対する近似解を提供する
論文 参考訳(メタデータ) (2021-07-25T16:47:57Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
本稿では、ニューラルネットワークによってパラメータ化され、ロバスト制御と同じ証明可能なロバスト性基準を適用した、一般的な非線形制御ポリシークラスを提案する。
提案手法は,複数の領域において有効であり,既存のロバスト制御法よりも平均ケース性能が向上し,(非ロバスト)深部RL法よりも最悪のケース安定性が向上した。
論文 参考訳(メタデータ) (2020-11-16T17:14:59Z) - Learning High-Level Policies for Model Predictive Control [54.00297896763184]
Model Predictive Control (MPC)は、ロボット制御タスクに対する堅牢なソリューションを提供する。
ニューラルネットワークの高レベルポリシーを学習するための自己教師付き学習アルゴリズムを提案する。
提案手法は, 標準的なMPCでは困難な状況に対処できることを示す。
論文 参考訳(メタデータ) (2020-07-20T17:12:34Z) - Learning Constrained Adaptive Differentiable Predictive Control Policies
With Guarantees [1.1086440815804224]
本稿では,線形システムに対する制約付きニューラルコントロールポリシーの学習方法として,微分可能予測制御(DPC)を提案する。
我々は,モデル予測制御(MPC)損失関数の逆伝搬と,微分可能な閉ループ系力学モデルによるペナルティの制約により,直接的な政策勾配を求めるために,自動微分を用いる。
論文 参考訳(メタデータ) (2020-04-23T14:24:44Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
強化学習フレームワークは、CBFおよびCLF制約に存在するモデル不確実性を学ぶ。
RL-CBF-CLF-QPは、安全制約におけるモデル不確実性の問題に対処する。
論文 参考訳(メタデータ) (2020-04-16T10:51:33Z) - Neural Lyapunov Model Predictive Control: Learning Safe Global
Controllers from Sub-optimal Examples [4.777323087050061]
多くの実世界の産業アプリケーションでは、例えば人間の操作者による実行など、既存の制御戦略を持つことが典型的である。
この研究の目的は、安全と安定性を維持する新しいコントローラを学習することで、この未知の、安全だが、最適でないポリシーを改善することである。
提案アルゴリズムは、端末コストを学習し、安定性基準に従ってMPCパラメータを更新する。
論文 参考訳(メタデータ) (2020-02-21T16:57:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。