論文の概要: Deep Learning Explicit Differentiable Predictive Control Laws for
Buildings
- arxiv url: http://arxiv.org/abs/2107.11843v1
- Date: Sun, 25 Jul 2021 16:47:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-27 15:45:16.055084
- Title: Deep Learning Explicit Differentiable Predictive Control Laws for
Buildings
- Title(参考訳): 建物におけるDeep Learning Explicit Differentiable Predictive Control Laws
- Authors: Jan Drgona, Aaron Tuor, Soumya Vasisht, Elliott Skomski and Draguna
Vrabie
- Abstract要約: 未知の非線形システムに対する制約付き制御法を学習するための微分予測制御(DPC)手法を提案する。
DPCは、明示的非線形モデル予測制御(MPC)から生じるマルチパラメトリックプログラミング問題に対する近似解を提供する
- 参考スコア(独自算出の注目度): 1.4121977037543585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a differentiable predictive control (DPC) methodology for learning
constrained control laws for unknown nonlinear systems. DPC poses an
approximate solution to multiparametric programming problems emerging from
explicit nonlinear model predictive control (MPC). Contrary to approximate MPC,
DPC does not require supervision by an expert controller. Instead, a system
dynamics model is learned from the observed system's dynamics, and the neural
control law is optimized offline by leveraging the differentiable closed-loop
system model. The combination of a differentiable closed-loop system and
penalty methods for constraint handling of system outputs and inputs allows us
to optimize the control law's parameters directly by backpropagating economic
MPC loss through the learned system model. The control performance of the
proposed DPC method is demonstrated in simulation using learned model of
multi-zone building thermal dynamics.
- Abstract(参考訳): 未知の非線形システムに対する制約付き制御法を学習するための微分予測制御(DPC)手法を提案する。
dpcは、明示的な非線形モデル予測制御(mpc)から生じるマルチパラメトリックプログラミング問題に対する近似解である。
MPCの近似とは対照的に、DPCは専門家の監督を必要としない。
代わりに、観測されたシステムのダイナミクスからシステムダイナミクスモデルを学び、微分可能なクローズドループシステムモデルを利用して、神経制御法則をオフラインで最適化する。
システム出力と入力の制約処理のための識別可能な閉ループシステムとペナルティ手法を組み合わせることで、学習システムモデルを通して経済的なMPC損失をバックプロパゲートすることで、制御則のパラメータを直接最適化することができる。
提案手法の制御性能は, マルチゾーン建築熱力学の学習モデルを用いてシミュレーションした。
関連論文リスト
- Dropout MPC: An Ensemble Neural MPC Approach for Systems with Learned Dynamics [0.0]
そこで本研究では,モンテカルロのドロップアウト手法を学習システムモデルに応用した,サンプリングベースアンサンブルニューラルMPCアルゴリズムを提案する。
この手法は一般に複雑な力学を持つ不確実なシステムを対象としており、第一原理から派生したモデルは推論が難しい。
論文 参考訳(メタデータ) (2024-06-04T17:15:25Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Multirotor Ensemble Model Predictive Control I: Simulation Experiments [0.0]
アンサンブル表現されたガウス過程は、初期時間の最適利得を決定するために後方計算を行う。
端末制御と制御問題のためのEMPCを構築し、シミュレーション・同一双対研究の制御に適用する。
論文 参考訳(メタデータ) (2023-05-22T01:32:17Z) - Learning Stochastic Parametric Differentiable Predictive Control
Policies [2.042924346801313]
本稿では、ニューラルネットワークポリシーの教師なし学習のための、パラメトリック微分可能予測制御(SP-DPC)と呼ばれるスケーラブルな代替手法を提案する。
SP-DPCはパラメトリック制約最適制御問題に対する決定論的近似として定式化される。
閉ループ制約と確率満足度に関するSP-DPC法を用いて学習したポリシーに関する理論的確率的保証を提供する。
論文 参考訳(メタデータ) (2022-03-02T22:46:32Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Approximate Robust NMPC using Reinforcement Learning [0.0]
障害や不確実性の存在下で非線形システムを制御するための強化学習に基づくロバストモデル予測制御(RL-RNMPC)を提案する。
論文 参考訳(メタデータ) (2021-04-06T18:34:58Z) - Anticipating the Long-Term Effect of Online Learning in Control [75.6527644813815]
AntLerは、学習を予想する学習ベースの制御法則の設計アルゴリズムである。
AntLer は確率 1 と任意に最適な解を近似することを示す。
論文 参考訳(メタデータ) (2020-07-24T07:00:14Z) - Learning Constrained Adaptive Differentiable Predictive Control Policies
With Guarantees [1.1086440815804224]
本稿では,線形システムに対する制約付きニューラルコントロールポリシーの学習方法として,微分可能予測制御(DPC)を提案する。
我々は,モデル予測制御(MPC)損失関数の逆伝搬と,微分可能な閉ループ系力学モデルによるペナルティの制約により,直接的な政策勾配を求めるために,自動微分を用いる。
論文 参考訳(メタデータ) (2020-04-23T14:24:44Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。